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UAbstract 
 

        In the current research we have chosen the reactions ( ) for 

nuclear fusion where energies of fusion and temperature of measuring cross 

section fusion were taken in consideration which have been performed by direct 

reaction method for complex nucleus, where the treatment was conducted in 

accordance with models (I, II, III).                         

        A comparison ,also, was conducted to some of related results. 

        To be noted , all nuclear reactions parameters have been extracted from 

international references, where they were  put in equations to calculate cross 

section fusion in all fusion reaction channels. 

        The theoretical calculations were performed by computer simulations of 

Matlab program  version 2009a.  
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Chapter one 

Introduction 

1.1.Controlled Thermonuclear Fusion 

 
         Scientists and Engineers  studied the release of enormous amounts of 

energy that occurs when light nuclei fuse together. Their researchs led them 

first to the successful development of the H-bomb. 

Many researchers at the time realized that rather than employing this 

uncontrolled explosive process to destroy humanity, they could put it to use 

to serve humankind if only they could find a way to confine the reaction. 

Thus, the dream of controlled thermonuclear fusion was born. 

      For example, in 1991 the controlled production of over a megawatt of 

fusion power (two megajoules of fusion energy were released) was 

demonstrated in the JET tokamak [1], and in 1999 the JT-60U tokamak 

reported the reproducible production of an equivalent fusion power gain of 

1.25 [2]; ; that is, more power was released by the fusion reaction than was 

required to sustain it. As a result of these successes, it is anticipated that the 

next generation of experimental reactors.[3] 

     In hydrogen fusion two protons have to be brought close enough for the 

weak nuclear force to convert either of the identical protons into a neutron 

forming the hydrogen isotope deuterium.Deuterium and tritium are the 

reactant for the fusion reaction. 

1.2 Literature Survey : 

       Attention and focus on nuclear fusion technology has been started from 

period of design the hydrogen bomb . So there is a huge number of 
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researches and articles about this subject. In our research,  we focus on 

articles carried out recently  In order to refer to the interest of the developed 

world in this technology due to the numerous applications of this 

technology.   

  -  Xing Z. Li in (2002)  studied the nuclear fusion data for deuteron-triton 

resonance near 100 keV are found to be consistent with the selective 

resonant tunneling model. The feature of this selective resonant tunneling is 

the selectivity. It selects not only the energy level, but also the damping rate 

(nuclear reaction rate). When the Coulomb barrier is thin and low, the 

resonance selects the fast reaction channel; however, when the Coulomb 

barrier is thick and high, the resonance selects the slow reaction channel. 

This mechanism might open an approach towards fusion energy with no 

strong nuclear radiation[18]. 

- Igor D. Kaganovich, Edward A. Startsev, et al in (2003)  studied knowledge 

of ion-atom ionization cross sections is of great importance for many 

applications. When experimental data and theoretical calculations are not 

available, approximate formulas are frequently used. Based on experimental 

data and theoretical predictions, a new fit for ionization cross sections by 

fully stripped ions is proposed[19]. 

-  V. I. Zagrebaev* and V. V. Samarin in (2004)  discussed the problem of a 

quantum-mechanical description of a near-barrier fusion of heavy nuclei 

that occurs under the conditions of a strong coupling of their relative motion 

to the rotation of deformed nuclei and to a dynamical deformation of their 

surfaces is studied. A new efficient method is proposed for numerically 

solving coupled Schrodinger equations with boundary conditions 

corresponding to a total absorption of the flux that has overcome a 

multidimensional Coulomb barrier. The new method involves nolimitations 
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on the number of channels that are taken into account and makes it possible 

to calculate cross sections for the fusion of very heavy nuclei that are used in 

the synthesis of superheavy elements. A global analysis of the relief of the 

multidimensional potential surface and of the multichannel wave function in 

the vicinity of the Coulomb barrier provides a clear interpretation of the 

dynamics of near-barrier nuclear fusion. A comparison with experimental 

data and with the results produced by the semiempirical model for taking 

into account the coupling of channels is performed[20]. 

-  M. Yu. Romanovsky and W. Ebeling  in (2003)  discussed the Holtsmark 

theory is generalized to finite ion clusters. It is shown that large (in 

comparison to infinite plasmas of the same density) fluctuations of electric 

microfield in ion clusters appear. The new field distribution shows a longer 

“tail” than the Holtsmark one. The previously developed semiclassical 

version of the theory of fusion rates in the presence of plasma electric 

microfields is applied to the case of nuclear fusion in charged deuterium 

clusters created by superstrong laser pulses. It is demonstrated that the effect 

of high free neutron output observed in several experiments with dense 

deuterium plasma pulses is supported by the action of the electric 

microfields[21]. 

- Xing Z. Li, Bin l., et al in (2004)  discussed the application of selective 

resonant tunneling model is extended from d + t fusion to other light nucleus 

fusion reactions, such as d + d fusion and d + 3He. In contrast to traditional 

formulas, the new formula for the cross-section needs only a few parameters 

to fit the experimental data in the energy range of interest. The features of 

the astrophysical S-function are derived in terms of this model. The physics 

of resonant tunneling is discussed[22]. 
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- L.F. Canto, R. Donangelo, et al in (2005) described a semiclassical 

treatment of nuclear fusion reactions involving weakly bound nuclei. In this 

treatment, the complete fusion probabilities are approximated by products of 

two factors: a tunneling probability and the probability that the system is in 

its ground state at the strong absorption radius. We investigate the validity of 

the method in a schematic two-channel application, where the channels in 

the continuum are represented by a single resonant state. Comparisons with 

full coupled-channels calculations are performed. The agreement between 

semiclassical and quantal calculations is quite good, suggesting that the 

procedure may be extended to more sophisticated discretizations of the 

continuum[23]. 

-  L.F. Canto, R. Donangelo, et al in (2005) assessed the validity of the 

semiclassical approximation of Alder and Winther in the study of breakup 

and fusion reactions induced by weakly bound projectiles. For this purpose, 

we are compare semiclassical results with results of full quantum mechanics 

calculations. We show that the semiclassical method leads to accurate results 

for the breakup cross section. We then adopt a semiclassical approximation 

for the l-dependent fusion probabilities and evaluate the cross section 

in a schematic two-channel problem. In this case, the semiclassical results 

are accurate above the Coulomb barrier but cannot reproduce the 

enhancement of the fusion cross section at sub-barrier energies. We show 

that this shortcoming can be eliminated through an analytical continuation of 

the time variable[24]. 

- Ruggero M. Santilli in (2008) proposed apparently for the first time a new 

type of controlled nuclear fusion called "intermediate" because occurring at 

energies intermediate between those of the "cold" and "hot" fusions to 

attempt the resolution of their known insufficiencies. The paper then 
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presents a progress report on the industrial realizations going on to enhance 

the net energy output that, currently, is already of the order of five times the 

used electric energy at relatively low operating power, pressure and 

temperature, as verifiable in the IBR laboratory in Florida. For this purpose 

they are showed  that known limitations of quantum mechanics, quantum 

chemistry and special relativity, such as their reversibility in time compared 

to the irreversibility of all energy re- leasing processes, cause excessive 

insufficiencies for all controlled nuclear fusions[25]. 

- Mark D., in (2008)  spent 17 years perfecting IEC, a fusion process that 

can potentially allow converting hydrogen and boron directly into electricity 

producing helium as the only waste product[26]. 

- Xing Z. Li, Qing M. Wei ,et al in (2008)  studied the recent ENDF/B VII.0 

data are compared with the fitting formula (NRL handbook—Plasma 

Formulary). The differences between experimental data and the fitting 

formula for three major fusion cross-sections reveal the need for a 

replacement to the old 5-parameter fitting formula. The new formula in this 

paper has only 3 parameters, but its fit with the experimental data is greatly 

improved because the energy dependence of the incident-channel (deuteron) 

width is taken explicitly into account through a penetrability function of the 

Mott form[27]. 

- Yeong E. Kim in (2010) studied theory of Bose-Einstein condensation 

nuclear fusion (BECNF) has been developed to explain many diverse 

experimental results of deuteron induced nuclear reactions in metals, 

observed in electrolysis and gas loading experiments. The theory is based on 

a single conventional physical concept of Bose-Einstein condensation of 

deuterons in metal and provides a consistent theoretical description of the 

experimental results[28]. 
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- Bulent Y. , Sakir A. , et al in (2011) discussed a semi-classical method that 

incorporates the quantum effects of the low-lying vibrational modes 

is applied to fusion reactions. The quantum effect is simulated by stochastic 

sampling of initial zero-point fluctuations of the surface modes. In this 

model, dissipation of the relative energy into non-collective excitations of 

nuclei can be included straightforwardly. The inclusion of dissipation is 

shown to increase the agreement with the fusion cross section data of Ni 

isotopes[29]. 

- J.K. Bitok, F.G. Kanyeki, et al in (2012) studied  fusion reaction cross-

section and angular momentum values help in identifying the possibility of 

occurrence of a fusion reaction. Fusion cross-sections of heavy ion reactions 

have been calculated using the semi-classical approach with heavy ions as 

projectiles. In this model of calculation of fusion reaction cross section, three 

potentials have been used namely: Coulomb potential, nuclear potential and 

centrifugal potential. Fusion reactions between the pairs of heavy ions have 

been studied and their cross-section calculated in semi classical formulation 

using one-dimensional barrier penetration model, taking scattering potential 

as the sum of Coulomb, centrifugal and proximity potential[30]. 

- E.N. Tsyganov, S.B. Dabagov, et al in (2012) discussed  accelerator 

experiment on fusion show a significant increase in the probability when 

target nuclei are imbedded in a conducting crystal. These experiments open 

a good perspective on the problem of so-called cold DD nuclear fusion. Here 

this approach is applied to another fusion processes, and some possible 

drawbacks are discussed[31]. 

-  Rajdeep S., Andreas M. , et al in (2012) studied a general coherent control 

scheme for speeding up quantum tunneling of proton transfer through 

Coulombic barriers is analysed. The quantum control scenario is based on 
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repetitive electron impact ionization pulses that affect the ensuing 

interference phenomena responsible for quantum dynamics and force the  

proton to tunnel into classically forbidden regions of configuration space.                                               

The scheme is demonstrated for the simplest model of nuclear fusion, 

hinting at the possible enhancement of reactive scattering based on low 

energy collisions[32]. 

- Leo G. Sapogin, Yu. A. Ryabov, in (2013) discussed problems Low 

Energy Nuclear Reactions  with position unitary quantum theory. Probability 

of these phenomena more than predicts usual quantum theory for small 

energy[33]. 

- - Igor D. Kaganovich, Ronald C. Davidson, et al in (2013) discussed 

stripping cross sections in nitrogen have been calculated using the classical 

trajectory approximation, and the Born approximation of quantum 

mechanics for the outer shell electrons of 3.2GeV . A large difference in 

cross section, up to a factor of six, calculated in quantum mechanics and 

classical mechanics, has been obtained. Because at such high velocities the 

Born approximation is well validated, the classical trajectory approach fails 

to correctly predict the stripping cross sections at high energies for electron 

orbitals with low ionization potential[34]. 

- Falah K. Ahmed, Fouad A. Majeed,  et al in (2013)  performed Coupled-

Channel (CC) calculations to study the effect of coupling to the breakup 

channel on the calculations of the total reaction cross section 𝜎𝜎 and the 

fusion barrier distribution at energies near and below the Coulomb 

barrier 𝑣𝑣𝑏𝑏  for the systems 𝐿𝐿𝐿𝐿6 + 𝐵𝐵𝐿𝐿209 , 𝐿𝐿𝐿𝐿7 + 𝐵𝐵𝐿𝐿209  and 𝐵𝐵𝐵𝐵9 + 𝑃𝑃𝑏𝑏208 . The 

inclusion of breakup reaction enhances the calculations of the total reaction 

cross section in comparison with the recent available experimental data at 
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energies near and below the Coulomb barrier. The inclusion of breakup 

channel is found to be very essential and modifies the calculations of the 

total fusion cross section markedly and describes the experimental data very 

well below and above the Coulomb barrier[35]. 

- P. Eudes1, Z. Basrak2, et al in (2013) studied of nearly 300 fusion-

evaporation cross section data reveals that, when properly scaled, fusion 

excitation function complies with a universal homographic law which is, 

within experimental errors, reaction system independent. From a such 

complete and summed complete and incomplete fusion excitation functions 

extracted are the limiting energy for the complete fusion and the main 

characteristics (onset, maximum and vanishing) of the incomplete fusion. 

The DYWAN microscopic transport model correctly predicts the incomplete 

fusion cross section for incident energies ≥ 15A MeV and suggests that the 

nuclear transparency is at the origin of fusion disappearance[36]. 

- V. Yu. Denisov in (2014)  suggested that the full nucleus-nucleus potential 

consists of the macroscopic and shell correction parts. The deep sub-barrier 

fusion hindrance takes place in a nucleus-nucleus system with a strong 

negative shell-correction contribution to the full heavy-ion potential, while a 

strong positive shell-correction contribution to the full potential leads to 

weak enhancement of the deep sub-barrier fusion cross section[37]. 

 

1.3 Back ground of theory 

       Deuterium it is called heavy hydrogen, it is a stable isotope of hydrogen 

it is found in natural abundance in the oceans. Deuterium accounts for 

approximately 0.0156% of all naturally occurring hydrogen in the oceans on 

earth. 
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       Tritium it is a radioactive isotope of hydrogen .The nucleus of tritium 

contains one proton and two neutrons. The most abundant hydrogen isotope 

of tritium is protium contains one proton and no neutrons. Naturally 

occurring tritium is rare on earth, where trace amounts are formed by the 

interaction of the atmosphere[15 liter][4] 

       In most fusion reactions two nuclei (X1 and X2) merge to form a  

heavier nucleus (X3) and a lighter particle (X4). To express this, we shall use 

either of the equivalent standard notations: 

X1 + X2 → 𝑋𝑋∗ →X3 + X4                                            ……………. (1-1) 

or 

X1(X2, X4)X3.                                                      ……………(1-2). 

      Due to conservation of energy and momentum, the energy released by 

the reaction is distributed among the two fusion products in quantity 

inversely proportional to their masses. 

       This indicate the velocities of the reacting nuclei in the laboratory 

system with v1 and v2, respectively, and their relative velocity with v = v1 − 

v2. The center-of-mass energy of the system of the reacting 

nuclei is then: 

𝜖𝜖 =  1
2
 𝑚𝑚𝑟𝑟  𝑣𝑣2                                                  …………(1-3) 

where v = |v|, and: 

𝑚𝑚𝑟𝑟  = 𝑚𝑚1𝑚𝑚2
𝑚𝑚1+𝑚𝑚2

                                                 ………..(1- 4) 

is the reduced mass of the system[4]. 

 

      Deuterium, tritium, neutron, and helium are the main players in the 

reaction (D + T = He + n + 17.6 MeV; see Figure (1.1) to realize the sun on 
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Earth. In the nanoworld of atoms and nuclei, particles exhibit wave 

characteristics, and nuclear properties and reaction mechanism are governed 

by the quantum mechanics theories. 

      These players have interesting properties. An encounter between 

deuterium and tritium results in the formation of a compound nucleus 

through the tunnel effect at a fractional energy of 500 keV Coulomb barrier 

potential. The compound nucleus has a high reaction probability near 80 

keV due to the resonance phenomenon. In this way, nature gives humans a 

chance to use this reaction.[5] 

 

 
Figure (1.1) The fusion reaction.[5] 

 

1.3.1 Fusion: Fusion of Little Nuts 

      The fusion that we are currently trying to achieve in ITER is the reaction 

of deuterium and tritium. This is different from the hydrogen fusion that 

takes place slowly in the sun. “Nucleus” is a Latin word meaning “little 

nuts”[6] . Deuterium and tritium form a “compound nucleus” (a concept 

originating from N. Bohr), 𝐻𝐻𝐵𝐵5  (helium), when they get close enough to 

each other for the nuclear force to operate beyond the Coulomb barrier when 
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the distance r is less than 3 fermi if we use nuclear radius formula  

𝑟𝑟𝑛𝑛=1.25 𝐴𝐴1 3⁄  fm (1 fermi =10−15  m; A is mass number) 

as seen in Figure 1.2.                                                                                                                                                                                                        

 

Figure (1.2) Schematic diagram of the DT fusion reaction via a 
compound nucleus .[5]   
 
The kinetic energy of the incident nuclei is distributed to nuclei in the 

compound nucleus of deuterium and tritium. The neutron and helium, which 

have large energies, will, by chance, escape from compound nucleus. 

D + T → 𝐻𝐻2
5 𝐵𝐵∗ → 𝐻𝐻𝐵𝐵2

4  + n +17.59 MeV              ………….(1- 5) 
 

Let Umax be the barrier height for charged particles,  
 
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  = 𝐵𝐵2/ (4𝜋𝜋𝜖𝜖°r) = 0.48 MeV [5]                        
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Figure (1.3) potential and wave function structure in the fusion reaction 
of deuterium and tritium.[5] 

for r = 3 fermi as seen in Figure 1.3. Fusion will occur if the relative energy 

of deuterium and tritium is larger than 0.48 MeV, but it is difficult to raise 

the temperature to this level (3.7 billion degrees). 

However, thanks to the wave nature of particles, fusion can occur at low 

energy (several 10 keV) by penetrating the Coulomb barrier. This is called 

the tunnel effect. 

       Scattering and penetration of the particle beam can be investigated by 

solving the Schrödinger equation under the Coulomb field (the potential 
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V =  𝐵𝐵2/ (4𝜋𝜋𝜖𝜖°r)) . This Schrödinger equation was first derived by 

Austrian physicist Erwin Schrödinger (1887–1961) who was awarded the 

1933 Nobel Prize in physics.[5] 
 

1.4 Cross section, reactivity, and reaction rate 
       A most important quantity for the analysis of nuclear reactions is the 

cross section, which measures the probability per pair of particles for the 

occurrence of the reaction[7]. To be more specific, let us consider a uniform 

beam of particles of type ‘1’, with velocity v1, interacting with a target 

containing particles of type ‘2’ at rest. The cross section 𝜎𝜎12  (𝑣𝑣1) is defined 

as the number of reactions per target nucleus per unit time when the target is 

hit by a unit flux of projectile particles, that is, by one particle per unit target 

area per unit time. Actually, the above definition applies in general to 

particles with relative velocity v, and is therefore symmetric in the two 

particles, since we have 𝜎𝜎12  (𝑣𝑣 )  =𝜎𝜎21  (𝑣𝑣 ) [4] 

      Cross sections can also be expressed in terms of the centre-of-mass 

energy Eq (1.3), and we have 𝜎𝜎12  (𝜖𝜖)  =𝜎𝜎21  (𝜖𝜖)   . In most cases, however, 

the cross sections are measured in experiments in which a beam of particles 

with energy 𝜖𝜖1, measured in the laboratory frame, hits a target at rest. 

       The corresponding beam-target cross-section  𝜎𝜎12
𝑏𝑏𝑏𝑏 (𝜖𝜖1)  is releated  to 

the centre of mass   cross-section 𝜎𝜎12  (𝜖𝜖) by [4]:                                                 

 

𝜎𝜎12(𝜖𝜖) = 𝜎𝜎12
𝑏𝑏𝑏𝑏 (𝜖𝜖1)                                                     …………(1- 6) 
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with            𝜖𝜖1= ϵ · (𝑚𝑚1+ 𝑚𝑚2)/ 𝑚𝑚2   [4] 

      From now on, we shall refer to centre-of mass cross-sections and omit 

the indices 1 and 2. 

      If the target nuclei have density 𝑛𝑛2 and are at rest or all move with the 

same velocity, and the relative velocity is the same for all pairs of projectile 

target nuclei, then the probability of reaction of nucleus ‘1’ per unit path is 

given by the product 𝑛𝑛2σ(v). The probability of reaction per unit time is 

obtained by multiplying the probability per unit path times the distance v 

travelled in the unit time, which gives 𝑛𝑛2 σ(v)v. 

    Another important quantity is the reactivity, defined as the probability 

of reaction per unit time per unit density of target nuclei. In the present 

simple case, it is just given by the product σv. In general, target nuclei move, 

so that the relative velocity v is different for each pair of interacting nuclei. 

In this case, we compute an expected value [4]: 

<𝜎𝜎𝑣𝑣 > = ∫ 𝜎𝜎(𝑣𝑣)𝑣𝑣𝑣𝑣(𝑣𝑣)𝑑𝑑𝑣𝑣∞
0                              …………..(1- 7) 

where f (v) is the distribution function of the relative velocities, normalized 

in such a way that ∫ ƒ∞
0  (v)dv = 1. It is to be observed that when projectile 

and target particles are of the same species, each reaction is counted twice.  

       Both controlled fusion fuels and stellar media are usually mixtures of 

elements where species ‘1’ and ‘2’, have number densities 𝑛𝑛1 and 𝑛𝑛2, 

respectively. The volumetric reaction rate, that is, the number of reactions 

per unit time and per unit volume is then given by: 

 

𝑅𝑅12 = 𝑛𝑛1𝑛𝑛2
1+𝛿𝛿12

 <𝜎𝜎𝑣𝑣 > = 𝑣𝑣1𝑣𝑣2
1+𝛿𝛿12

𝑛𝑛2 <𝜎𝜎𝑣𝑣 >             …………(1- 8) 
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       Here n is the total nuclei number density and f1 and f2 are the atomic 

fractions of species ‘1’ and ‘2’, respectively. The Kronecker symbol δij 

(with δij = 1, if i = j and δij = 0 elsewhere) is introduced to properly take  

into account the case of reactions between like particles. Equation 1.8 

shows a very important feature for fusion energy research: the volumetric 

reaction rate is proportional to the square of the density of the mixture. 

For future reference, it is also useful to recast it in terms of the mass density 

ρ of the reacting fuel: 

 

𝑅𝑅12 = 𝑣𝑣1𝑣𝑣2
1+𝛿𝛿12

 𝜌𝜌
2

𝑚𝑚� 2 <𝜎𝜎𝑣𝑣 >                                      ……….(1- 9)   

هنا المعادلة اكتب .where 𝑚𝑚���2  is the average nuclear mass. Here, the mass density is computed 

as ρ = ∑j njmj = n 𝑚𝑚�2 , where the sum is over all species, and the very small 

contribution due to the electrons is neglected.We also immediately see that 

the specific reaction rate, that is, the reaction rate per unit mass, is 

proportional to the mass density, again indicating the role of the density of 

the fuel in achieving efficient release of fusion energy[4]. 

 

1.5 Nuclear Potential  
       In general, nuclear reaction is usually theorized and analyzed in three 

steps; initial state interaction, intermediate compound state and final state 

interaction. Transition from intermediate state to final state has various, 

sometimes complex, channels such as the electro-magnetic transition to 

ground state emitting gamma rays, the particle (neutron, proton, alpha-

particle etc.) emission and residual nucleus, which sometimes decay to 

ground state emitting gamma-rays, and the direct break-up to two or more 
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nuclei like fission. Potential for nuclear strong force and Coulomb force in 

these cases can be categorized into three cases[8]) as in fig.(1-4). 

       The potential state (I) shows the case that nucleons (neutrons and 

protons) are trapped in a very deep well of strong force. Stable isotopes of 

masses less than 60 have this type potential well. Fusion reactions by two 

light nuclei produce stable isotopes of this type. 

       The potential state (II) appears for intermediate compound state in 

general. Radioactive isotope has this kind of potential. Stable isotopes 

having masses greater than 60 are trapped in these type potentials which are 

drawn according to the fission channels breaking-up to lighter nuclei. In this 

case, the depth of trapping potential is deep enough to have very long life 

time, but positive Q-value for fission channels makes height of potential tail 

in outer-skirt lower than the depth of trapping well. At ground state, the 

thickness of potential well is large enough to make the quantum-mechanical  

tunneling probability of fission to be “inverse-astronomically” very close to 

zero.Therefore, nucleus is regarded as stable isotope. Here, Q-value is 

obtained by calculating mass defect between before and after reaction, using 

Einstein’s formula E = m𝑐𝑐2[9]. However, when the intermediate compound 

nucleus has high inner excited energy Ex, the thickness of outer wall of 

trapping potential becomes relatively thin and quantum mechanical 

tunneling probability for particle emission or fission can dramatically 

increase. Fission process for uranium and trans-uranium nuclei is induced 

in this way. Moreover, we may have possibility of fission for lighter nuclei 

with mass A < 200. In some of proposed theories[10-12]) in the Condensed 

Matter Nuclear Science (CMNS), deterministic models of fission for 60 < A 

< 200 nuclei have been developed[9]. 
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Figure (1-4): Three potential types for nuclear interaction[9]. 

 

        The potential type (III) is the case for intermediate compound nucleus 

having very high inner excited energy Ex, such as cases of fusion reactions 

of hydrogen isotopes. Compound nucleus in this case promptly breaks up to 

fragment-particles.[9] 

1.5.1 Strong Interaction 

        Now we explain very briefly the feature of potential by nuclear strong 

interaction. The reason why nucleons are trapped within very small spherical 

space with radius about 5 fm (1 fm = 110−15  m) was first solved by the 

famous Yukawa model of pion exchange. Hideki Yukawa won Nobel Prize 

by this theory. Later, the theory of strong force has been deepened by the 

development of QCD[13]) based on concept of quark and gluon. However, 

as the conclusion in recent views of nuclear physics, the strong interaction 

can be drawn accurately enough by the Yukawa model with charged pions 

(π ＋,π― ) and neutral pion, for relative reaction energy less than about 200 
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MeV (less than the threshold energy of pion-generation). Especially, for 

fusion reaction process, charged pions play role of sticking two (or more) 

nuclei. Nuclear fusion by strong interaction can be simulated by the catch-

ball model of charged pions between nuclei for fusing. Due to the very short 

range of de Broglie wave length (about 2 fm) of pion, the strong interaction 

for fusion becomes very short range force, namely “almost on surface” 

sticking force. For example, when relatively large (A>6) two nuclei 

approach closely, fusion force by exchanging charged pions (between 

neutron and proton for counter-part nuclei) becomes the sticking force near 

at surface (R= 𝑟𝑟°). Exchange of neutral pion for scattering (repulsive) force 

between nucleons of counter-part nuclei also happens in the region relatively 

near at surface. Especially, nuclear fusion reactions at very low energy as 

cold cluster fusion and transmutation as modeled by EQPET/TSC theory , 

largeness of surface area for exchanging charged pions governs the largeness 

of reaction cross section. This is specific character of “nuclear reactions in 

condensed matter”[9]. 

 

1.5.2 Optical Potential 
       Global optical potential [14]), written by complex number, is used for 

nuclear potential of strong interaction for scattering and sticking forces. 

Image of global optical potential is drawn in Fig.1-5. The real part, namely 

deep trapping potential V(r) is a well with rather round shape near at surface 

of nucleus (Woods-Saxon type) , but is approximated to be constant value 𝑉𝑉° 

within in nucleus. 

U(r) = V(r) + i W(r)                                                           ………(1- 10)   
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𝑉𝑉° is about -25MeV for deuteron. 𝑉𝑉° value saturates to about -50MeV for 

nuclei of A>24. Imaginary part W(r) corresponds to the interaction of 

charged-pion exchange, and locates near at surface (r = 𝑟𝑟°) to be 

approximated by delta-function 𝑊𝑊°δ(r- 𝑟𝑟° ). When we use this delta-function 

approximation, fusion rate formula becomes simple[9]. 

 
Figure(1-5): Optical potential for strong interaction[9] 

 

 

T Matrix and Reaction Cross Section 
      Now we briefly summarize quantum mechanical basis of scattering and 

reaction process. 

Asymptotic wave function [14,15]) after scattering (interaction) is written by 

Eq.(1-11). 

Ψ(r) ≈ 𝐵𝐵𝐿𝐿𝑖𝑖𝑖𝑖+ f(𝜃𝜃)(𝐵𝐵𝐿𝐿𝑖𝑖𝑟𝑟 / r)                                           ………..(1-11)     
Differential cross section of process is defined by: 
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𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑

 = |𝑣𝑣(𝜃𝜃)|2                                                               ……..(1-12) 

S-matrix is defined by the phase-shift analysis [14,15]) as using Legendre 

polynomial expansion for scattering amplitude f (θ) 

𝑣𝑣(𝜃𝜃)= (1/ 2ik) ∑ (2𝑙𝑙 + 1)∞
𝑙𝑙=0 (𝑆𝑆𝑙𝑙  - 1)𝑃𝑃𝑙𝑙(cos 𝜃𝜃)           ……..(1-13) 

𝑆𝑆𝑙𝑙  = 𝐵𝐵2𝐿𝐿𝛿𝛿𝑙𝑙                                                                    ……...(1-14) 
 

     In general reaction process, not only elastic scattering but also absorption, 

fusion, particle emission processes are taking place as transition. To treat the 

transition from (α, β) to (α’, β’) channel, evaluation of T-matrix elements are 

usually done. T-matrix is defined by the following Lippmann-Schwinger 

equation[15]: 

T = U+U𝐺𝐺°T                                                          ……..(1-15) 

𝐺𝐺° = (E −  𝐻𝐻°  +  I 𝛿𝛿)−1                                        ……..(1-16) 

H = U +  𝐻𝐻°                                                           ……...(1-17) 

Here, 𝐺𝐺° is the Green operator for H0 Hamiltonian with kinetic energy and 

spin Hamiltonian only. Scattering amplitude is defined by: 

 

𝑣𝑣(𝜃𝜃;𝛼𝛼𝛼𝛼 →  𝛼𝛼′𝛼𝛼′) = - (2𝜋𝜋/ℎ2)< Ψ𝛼𝛼′ 𝛼𝛼′ |𝑇𝑇|Ψ𝛼𝛼  𝛼𝛼 > ……(1-18) 

 
      If we approximate T=T(0) = U, formula (1-18) becomes the Born 

approximation. Lippmann-Schwinger equation can be regarded as an 

integral type equation of Schroedinger differential equation. The first order 

approximation of T is given by inserting T=U in Eq (1-15), and we obtain 

T(1) = U + U𝐺𝐺°U. The second order approximation is then given as T(2) = 
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U + U𝐺𝐺°T(1) , and the n-th order approximation gives T(n) = U +U𝐺𝐺°T(n-1) 

. This successive treatment is known as Neumann series solution of integral 

equation[16]. 

    We can treat reaction cross section including transition by evaluating T 

matrix elements. 

     For the optical potential of V + iW type with constant V and W values, 

formulas of reaction cross section are given in standard text book of nuclear 

physics(Chapter 9 of Reference 6) for S-wave ( l =0 ). 

 

𝜎𝜎𝑟𝑟 .0 = 𝜋𝜋𝜆𝜆2 −4𝐾𝐾𝑅𝑅𝐾𝐾𝑚𝑚  𝑣𝑣°
(𝑅𝑅𝐵𝐵𝑣𝑣°)2+(𝐾𝐾𝑚𝑚𝑣𝑣°−𝐾𝐾𝑅𝑅)2                                    ………(1-19) 

 

𝐾𝐾 = 1
ɦ
�2𝑀𝑀(|𝐸𝐸 + 𝑉𝑉 + 𝐿𝐿𝑊𝑊|)                                       ……….(1-20) 

 

𝑣𝑣° = 𝐾𝐾𝑅𝑅 𝑐𝑐𝑐𝑐𝑏𝑏𝐾𝐾𝑅𝑅                                                        ……..(1-21)    
 

And relations between S-matrix and T-matrix for Legendre coefficients 

are[3]: 

𝑇𝑇𝑙𝑙 = 𝐵𝐵𝐿𝐿𝛿𝛿𝑙𝑙  sin 𝛿𝛿𝑙𝑙                                                          …….(1-21)    

𝑆𝑆𝑙𝑙=1+2i𝑇𝑇𝑙𝑙                                                                  ……..(1-22)   
By evaluating T-matrix elements, we can treat reaction with channel 

transition. 

     As shown in Fig.1-6 , X. Z. Li evaluated  fusion cross section for dd, dt 

and d 𝐻𝐻𝐵𝐵3  reactions using S-matrix formulas. Fusion cross sections are 

shown in Fig.1-6. S-matrix formula and evaluated values of V and W 

(written as 𝑈𝑈1𝑟𝑟  and 𝑈𝑈1𝐿𝐿  in Fig.1-4) for dt reaction are shown in Fig.1-6.[3] 
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Figure (1-6): Fusion cross sections for dt, d3He and dd processes.[3] 

     Li used the reaction cross section formula with S-matrix [17]. Li obtained 

averaged values of V and W of optical potential by fitting calculated curves 

to experimental cross sections.[3] 

      Finally   We know that Fusion, a source of the sun’s energy offer a clean, 

potentially limitless source of electricity and power. Hence a magnetic 

fusion reactor by using plasma would manage to bring about the nuclear 

fusion reation in a controlled way. Plasma is a new state of matter in which 

most of the atoms are ionized due to some sort of `violence' and breaking 

away of the originally bound electrons.Within the plasma, colliding 

deuterium and tritium nuclei would fuse into helium nuclei and release 

energy to be converted into electricity. 

1.6 Aim of present work: 

     Calculation the cross section for controlled fusion reactions play 

important rule in the design of any nuclear fusion systems requires  prior 

theoretical calculations to identify all the relevant physical  factors such as 
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the neutron and proton and x-ray  yields in addition to the reaction rate 

where from these factors one can bring to the find requirement calculation 

for  calculation the electric power generation.  
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Chapter 2 

Theory 

2.1 Fusion cross section parametrization 
      In order to fuse, two positively charged nuclei must come into contact, 

winning the repulsive Coulomb force. Such a situation is made evident by 

the graph of the radial behaviour of the potential energy of a two nucleon 

system, shown in Fig. 2.1. The potential is essentially Coulombian and 

repulsive 

𝑉𝑉𝑐𝑐(𝑟𝑟) = 𝑍𝑍1𝑍𝑍2 𝐵𝐵2

𝑟𝑟
                                                                       ……..(2-1) 

at distances greater than 

𝑟𝑟𝑛𝑛 ≅1.44 (𝐴𝐴1
1 3⁄ + 𝐴𝐴2

1 3⁄ )    fermi                                   ……..(2-2) 

which is about the sum of the radii of the two nuclei. In the above equations 

𝑖𝑖1and 𝑖𝑖2 are the atomic numbers, 𝐴𝐴2 and 𝐴𝐴2 the mass numbers of the 

interacting nuclei, and e is the electron charge. At distances r <𝑟𝑟𝑛𝑛   the two 

nuclei feel the attractive nuclear force, characterized by a potential well of 

depth 𝑈𝑈° = 30– 40 MeV.  

     Using eqns 2.1 and 2.2 we find that the height of the Coulomb barrier 

 

𝑉𝑉𝑏𝑏 ≈ 𝑉𝑉𝑐𝑐(𝑟𝑟𝑛𝑛 ) = 𝑍𝑍1𝑍𝑍2 

𝐴𝐴1
1 3⁄ + 𝐴𝐴2

1 3⁄   MeV                           …….(2-3) 

 

is of the order of one million electron-Volts (1 MeV). According to classical 

mechanics, only nuclei with energy exceeding such a value can overcome                                                                           
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Figure (2.1) Potential energy versus distance between two charged 
nuclei approaching each other with center-of-mass energy _. The figure 
shows the nuclear well, the Coulomb barrier, and the classical turning 
point[4]. 
 
the barrier and come into contact. Instead, two nuclei with relative energy ϵ 

<𝑉𝑉𝑏𝑏   can only approach each other up to the classical turning point 

𝑟𝑟𝑏𝑏𝑡𝑡  = 𝑍𝑍1𝑍𝑍2 𝐵𝐵2

𝜖𝜖
                                                              ……….(2-4) 

 

 

Quantum mechanics, however, allows for tunnelling a potential barrier of 

finite extension, thus making fusion reactions between nuclei with energy 

smaller than the height of the barrier possible. 

A widely used parametrization of fusion reaction cross-sections is[4] 

σ ≈ 𝜎𝜎𝑔𝑔𝐵𝐵𝑐𝑐𝑚𝑚  × 𝑇𝑇𝑙𝑙× R,                                              ……(2-5)   
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where 𝜎𝜎𝑔𝑔𝐵𝐵𝑐𝑐𝑚𝑚  is a geometrical cross-section, T is the barrier transparency, 

and R is the probability that nuclei come into contact fuse. The first quantity 

is of the order of the square of the de-Broglie wavelength of the system[4]: 

𝜎𝜎𝑔𝑔𝐵𝐵𝑐𝑐𝑚𝑚 ≈ ƛ2= ( ħ
𝑚𝑚𝑟𝑟𝑣𝑣

)2 ∝ 1
𝜖𝜖
                                    ………(2-6) 

where ħ is the reduced Planck constant and 𝑚𝑚𝑟𝑟  is the reduced mass . 

Concerning the barrier transparency, we shall see that it is often well 

approximated by[4]: 

 

𝑇𝑇𝑙𝑙 ≈ Ƭ𝐺𝐺= exp(- �𝜖𝜖𝐺𝐺 𝜖𝜖⁄ )                                       ……..(2-7) 

which is known as the Gamow factor (after the scientist who first computed 

it), where: 

 

𝜖𝜖𝐺𝐺= (𝜋𝜋 𝛼𝛼𝑣𝑣𝑍𝑍1𝑍𝑍2  )2 2𝑚𝑚𝑟𝑟𝑐𝑐2= 986.1 𝑍𝑍1
2𝑍𝑍2

2 𝐴𝐴𝑟𝑟   (keV) ….(2-8) 

 

is the Gamow energy,  𝛼𝛼𝑣𝑣= 𝐵𝐵2/ħc = 1/137.04 is the fine-structure constant 

commonly used in quantum mechanics, and  𝐴𝐴𝑟𝑟   = 𝑚𝑚𝑟𝑟 /𝑚𝑚𝑡𝑡 . Equation 2.7 

holds as far as 𝜖𝜖 ≪ 𝜖𝜖𝐺𝐺  , which sets no limitations to the problems we are 

interested in Eq( 2.7) and 2.8 show that the chance of tunnelling decreases 

rapidly with the atomic number and mass, thus providing a first simple 

explanation for the fact that fusion reactions of interest for energy 

production on earth only involve the lightest nuclei the reaction 

characteristics contains essentially all the nuclear physics of the specific 

reaction. It takes substantially different values depending on the nature of 

the interaction characterizing the reaction. It is largest for reactions due to 
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strong nuclear interactions; it is smaller by several orders of magnitude for 

electromagnetic nuclear interactions; it is still smaller by as many as 20 

orders of magnitude for weak interactions. For most reactions, the variation 

of R(ϵ) is small compared to the strong variation due to the Gamow factor. 

Astrophysical S factor in conclusion, the cross section is often written as[4]: 

 

𝜎𝜎(𝜖𝜖) = 𝑆𝑆(𝜖𝜖)
𝜖𝜖

 exp (- �𝜖𝜖𝐺𝐺 𝜖𝜖⁄ )                                              ……(2-9) 

 

       where the function 𝑆𝑆(𝜖𝜖) is called the astrophysical S factor, which for 

many important reactions is a weakly varying function of the energy. An 

excellent introduction to the computation of fusion cross-sections and 

thermonuclear reaction rates can be found in the classical textbook on stellar 

nucleosynthesis by Clayton (1983). Classic references on nuclear physics are 

Blatt and Weisskopf (1953), Segrè (1964), and Burcham (1973). In the 

following portion of this section, we outline the evaluation of the fusion 

cross-section for non-resonant reactions, which justifies the parametrization 

2.9. The treatment is simplified and qualitative, but still rather technical[4] 

 

2.1.1 Penetration factors for non-resonant reactions 

       The total cross-section can be obtained as a sum over partial waves, that 

is over the contributions of the different terms of an expansion of the particle 

wave-function in the components of the angular momentum l. We then 

write[7]: 
 

𝜌𝜌(𝑣𝑣)=∑ 𝜎𝜎𝑙𝑙(𝑣𝑣)𝑙𝑙                                                      ……(2-10) 
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Far from resonances the partial cross-section can be put in the form[7]: 
 
 

𝜎𝜎𝑙𝑙(𝑣𝑣) ≈2𝜋𝜋ƛ2 (2𝑙𝑙 + 1)𝛼𝛼𝑙𝑙Ƭ𝑙𝑙                                    ……(2-11)   

where 𝛼𝛼𝑙𝑙  is a function taking into account nuclear interactions and Ƭ𝑙𝑙  is the 

barrier transmission coefficient. This last factor, defined as the ratio of 

particles entering the nucleus per unit time to the number of particles 

incident on the barrier per unit time, can be written as[7]: 

 

Ƭ𝑙𝑙 ≈ 𝑃𝑃𝑙𝑙 �1 + ƛ2

ƛ°
2�
− 1 2⁄

= 𝑃𝑃𝑙𝑙 �1 + 𝑈𝑈°
𝜖𝜖
�
− 1 2⁄

 ≈ ( 𝜖𝜖
𝑈𝑈°

)1 2⁄  𝑃𝑃𝑙𝑙   …..(2-12) 

 

that is, the product of the barrier penetration factor 𝑃𝑃𝑙𝑙  , measuring the 

probability that nucleus ‘2’ reaches the surface of nucleus ‘1’, and of  a 

potential discontinuity factor, due to the difference between the wavelength 

of the free nucleus and that of the compound nucleus in the nuclear well    

ƛ°= ħ (2𝑚𝑚𝑟𝑟𝑈𝑈°)1 2⁄⁄ . According to quantum mechanics, the barrier 

penetration factors 𝑃𝑃𝑙𝑙  are computed by solving the time-independent 

Schroedinger equation[7]:  

 

ħ2

2𝑚𝑚𝑟𝑟
 ∇2𝛹𝛹 + (𝜖𝜖 - 𝑉𝑉𝑐𝑐  ) 𝛹𝛹 = 0                                          …….(2-13) 

 
for the wavefunction ψ(r) describing the relative motion of the two 

interacting nucleons in a Coulomb potential extending from r = 0 to infinity. 
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As usual for problems characterized by a central potential, we separate radial 

and angular variables, that is, we write ψ(r, θ, φ) = Y(θ, φ)χ(r)/r. We then 

expand the function χ(r) into angular momentum components, 𝑚𝑚𝑙𝑙(r), each 

satisfying the equation[7]: 

 

1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟

 𝑑𝑑
2

 𝑑𝑑𝑟𝑟 2 𝑚𝑚𝑙𝑙(r) + 2𝑚𝑚𝑟𝑟
ħ2  [𝜖𝜖 −  𝑊𝑊𝑙𝑙 (r)]𝑚𝑚𝑙𝑙(r) = 0              ……..(2-14) 

Where 

𝑊𝑊𝑙𝑙 (r) = 𝑉𝑉𝑐𝑐(𝑟𝑟) + ħ
2𝑙𝑙(𝑙𝑙+1)
2𝑚𝑚𝑟𝑟𝑟𝑟2                                               …….(2-15) 

 

takes the role of an effective potential for the lth component. This last 

equation shows that each angular momentum component sees an effective 

potential barrier of height increasing with l.We therefore expect the l = 0 

component (S-wave) to dominate the cross section, in particular for light 

elements. An exception will occur for reactions in which the compound 

nucleus, formed when the two nuclei come into contact, has forbidden l = 0 

levels. This latter case, however, does not occur for any reaction of 

relevance to controlled fusion.  

       Once the solution  𝑚𝑚𝑙𝑙(r) of Eq( 2.14) is known, the penetration factor 

 for particles with angular momentum l is given by[7]: 

 

𝑃𝑃𝑙𝑙  = 𝑚𝑚𝑙𝑙
∗(𝑟𝑟𝑛𝑛 )𝑚𝑚𝑙𝑙𝑟𝑟𝑛𝑛

𝑚𝑚𝑙𝑙∗(∞)𝑚𝑚𝑙𝑙(∞)
                                              …….(2-16) 

 

       Exact computations of the wavefunctions 𝑚𝑚𝑙𝑙(r) are feasible, but involved 

(Bloch et al. 1951). However, much simpler and yet accurate evaluations of 
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the penetration factors can be performed by means of WKB method (after 

the initials of Wentzel, Kramers, and Brillouin), discussed in detail in 

standard  books on quantum mechanics (Landau and Lifshitz 1965; Messiah 

1999) or mathematical physics (Matthews and Walker 1970). A pedagogical 

application to the computation of penetration factors is presented by Clayton 

(1983). Here it suffices to say that application of the method leads to[7]  

 

𝑃𝑃𝑙𝑙  = �𝑊𝑊𝑙𝑙(𝑟𝑟𝑛𝑛 )− 𝜖𝜖
𝜖𝜖

�
1 2⁄

 exp(- 𝐺𝐺𝑙𝑙)                                …….(2-17) 

 

with the dominant exponential factor given by[7]: 
 
 

Gl= 2(2𝑚𝑚𝑟𝑟)1 2⁄

ħ
 ∫ [𝑊𝑊𝑙𝑙(r) − 𝜖𝜖]1 2⁄𝑟𝑟𝑏𝑏𝑡𝑡 (𝜖𝜖)
𝑟𝑟𝑛𝑛

 dr                        …….(2-18) 

 

 where 𝑟𝑟𝑏𝑏𝑡𝑡  is the turning point distance (2.4). For l = 0, using Eq( 2.15) for 

𝑊𝑊𝑙𝑙(r), we obtained [7]: 

 

𝐺𝐺° = 2
𝜋𝜋
 �𝜖𝜖𝐺𝐺

𝜖𝜖
�𝑚𝑚𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎�

𝑟𝑟𝑛𝑛
𝑟𝑟𝑏𝑏𝑡𝑡

− �
𝑟𝑟𝑛𝑛
𝑟𝑟𝑏𝑏𝑡𝑡
�1 − 𝑟𝑟𝑛𝑛

𝑟𝑟𝑏𝑏𝑡𝑡
�              …….(2-19) 

 

Since for Eq(2.3) (2.4), 𝑟𝑟𝑛𝑛 𝑟𝑟𝑏𝑏𝑡𝑡⁄ (𝜖𝜖) = 𝜖𝜖 𝑉𝑉𝑏𝑏⁄ , and in the cases of interest 

ϵ<<𝑉𝑉𝑏𝑏 , we can expand the right-hand side of Eq (2.19) in powers of (𝜖𝜖 𝑉𝑉𝑏𝑏⁄ ), 

thus obtaining[7]: 
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𝐺𝐺°=�
𝜖𝜖𝐺𝐺
𝜖𝜖
�1 − 4

𝜋𝜋
� 𝜖𝜖
𝑉𝑉𝑏𝑏
�

1 2⁄
+ 2

3𝜋𝜋
� 𝜖𝜖
𝑉𝑉𝑏𝑏
�

3 2⁄
+ ⋯�             …….(2-20) 

 

In the low energy limit, we have 𝐺𝐺° ≈ (𝜖𝜖𝐺𝐺 /ϵ)1/2, and the S-wave 

penetration factor becomes[7]:  

 

𝑃𝑃° ≅ �𝑉𝑉𝑏𝑏
𝜖𝜖
�

1 2⁄
 exp(-�𝜖𝜖𝐺𝐺

𝜖𝜖
)                                       ……..(2-21) 

 

Penetration factors for l > 0 are approximately given by[7]: 

 

𝑃𝑃𝑙𝑙=𝑃𝑃°exp�−2𝑙𝑙(𝑙𝑙 + 1)(𝑉𝑉𝑙𝑙
𝑉𝑉𝑏𝑏

)1 2⁄ �                             

  =𝑃𝑃°exp�−7.62𝑙𝑙(𝑙𝑙 + 1)/(𝐴𝐴𝑟𝑟𝑟𝑟𝑛𝑛𝑣𝑣 𝑍𝑍1𝑍𝑍2)1 2⁄ �        ………(2-22) 

 
 

where 𝑟𝑟𝑛𝑛𝑣𝑣  is the nuclear radius in units of 1 fermi = 10−15cm. Equation 2.22 

confirms that angular momentum components with l > 0 have penetration 

factors much smaller than the l = 0 component. This allows us to keep the S-

wave term only in the cross-section expansion in Eq( 2.10), which leads us 

to evaluate the barrier transparency and the cross section as[7]: 

 

𝑇𝑇𝑙𝑙 ≈ Ƭ° = �𝑉𝑉𝑏𝑏
𝑈𝑈°
�

1 2⁄
 exp(-�𝜖𝜖𝐺𝐺

𝜖𝜖
)                                      ………(2-23) 

And 
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𝜎𝜎(𝜖𝜖) ≈ 𝜎𝜎𝑙𝑙= 0(𝜖𝜖) ≈ �𝜋𝜋 ħ2

𝑚𝑚𝑟𝑟
𝛼𝛼𝑙𝑙 = 0 �𝑉𝑉𝑏𝑏

𝑈𝑈°
�

1 2⁄
�  exp(−𝜖𝜖𝐺𝐺 𝜖𝜖⁄ )

𝜖𝜖
   …..(2-24) 

 

respectively. Equation 2.24 for the cross section has the same form as the 

parametrization  Eq(2.9), with the term in square brackets corresponding to 

the astrophysical S-factor. S-wave cross section. 

Another form of Eq (2.23), which will turn useful later, is[7]: 

 

𝑇𝑇𝑙𝑙=  �𝑉𝑉𝑏𝑏
𝑈𝑈°
�

1 2⁄
𝐵𝐵𝑚𝑚𝑡𝑡 �−𝜋𝜋( 𝑟𝑟𝑏𝑏𝑡𝑡

𝑚𝑚𝐵𝐵∗
)1 2⁄ �                            ……….(2-25) 

 

Where 

 

𝑚𝑚𝐵𝐵∗ = ħ2/(2𝑚𝑚𝑟𝑟𝑍𝑍1𝑍𝑍2𝐵𝐵2)                                     ………(2-26) 
 

may be looked at as a nuclear Bohr radius[7]. 

 

2.2 Some important fusion reactions 
     In Table 2.1 we list some fusion reactions of interest to controlled fusion 

research and to astrophysics. For each reaction the table gives theQ-value, 

the zero-energy astrophysical factor S(0) and the square root of the Gamow 

energy 𝜖𝜖𝐺𝐺 . For the cases in which S(ϵ) is weakly varying these data allow for 

relatively accurate evaluation of the cross section, using eqn 2.9, with S = 

S(0). 

    For some of the main reactions, Table 2.2 gives the measured cross 

sections at ϵ = 10 keV and  ϵ = 100 keV, as well as the maximum value of 
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the cross-section 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 , and the energy 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 ,  at which the maximum occurs. 

Also shown, in parentheses, are theoretical data for the pp and CC reactions. 

In the tables and in the following discussion, the reactions are grouped 

according to the field of interest. 

     A large and continuously updated database on fusion reactions, quoting 

original references for all included data, has been produced and is updated 

by the NACRE (Nuclear Astrophysics Compilation of Reaction rates) group 

(Angulo et al. 1999) and can also be accessed through the internet . Standard 

references for fusion reaction rates are a compilation of data by Fowler et al. 

(1967) and its subsequent updates (Fowler et al. 1975; Harris et al. 1983). 

Data on many fusion reactions of astrophysical relevance have been recently 

reviewed by Adelberger et al. (1998). Data on the DD, DT, and D 3He 

reactions have been critically reviewed by Bosch and Hale (1992); the most 

recent reference on p 11B is Nevins and Swain (2000). An interesting list of 

thermonuclear reactions has also been published by Cox et al. (1990). 

Graphs of the cross section of reactions of interest to fusion energy versus 

center-of-mass energy are shown in Fig. 2.2.[7] 
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Figure(2.2)Fusion cross sections versus centre-of-mass energy for 

reactions of interest to controlled fusion energy [38]. 

2.2.1 Main controlled fusion fuels 
    First, we consider the reactions between the hydrogen isotopes deuterium 

and tritium, which are most important for controlled fusion research. Due to 

Z = 1, these hydrogen reactions have relatively small values of 𝜖𝜖𝐺𝐺and hence 

relatively large tunnel penetrability. They also have a relatively large S. 

The DT reaction: 

           D + T → α (3.5 MeV) + n (14.1 MeV)         …….(2-27) 
has the largest cross-section, which reaches its maximum (about 5 barn) at 

the relatively modest energy of 64 keV (see Fig. 2.2). Its 𝑄𝑄𝐷𝐷𝑇𝑇  = 17.6 MeV is 

the largest of this family of reactions. It is to be observed that the cross 
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Table (2.1) Some important fusion reactions and parameters of the 

cross-section factorization [4] 

𝜖𝜖G
1/2 

 (keV1/2) 

S(0)              

(keV barn) 

〈𝑄𝑄𝑣𝑣〉 

 (MeV) 

Q 

 (MeV) 

 

 

 
34.38 
31.40 
31.40 
31.40 
38.45 

 
68.75 
87.20 
88.11 
150.3 

 
22.20 
25.64 
153.8 

 
181.0 

_ 
181.5 
212.3 

_ 
212.8 

 
 

2769 
 
 
 

 
1.2 ˟104 

56 
54 

4.2˟10-3 
138 

 
5.9˟103 

5.5˟103 

80 
2˟105 

 
4.0˟10-22 
2.5˟ 10-4 

5.4 ˟103 

 
1.34 

_ 
7.6 
3.5 
— 

6.75 ˟104 
 
 

8.83 ˟1019 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

0.27 
 
 
 
 

0.71 
 

1.00 

 
17.59 
4.04 
3.27 
23.85 
11.33 

 
18.35 
4.02 
17.35 
8.68 

 
1.44 
5.49 
12.86 

 
1.94 
2.22 
7.55 
7.29 
2.76 

      4.97 
 

2.24 
4.62 
13.93 

 
 

Main controlled fusion fuels 
D+T                      α  + n 
         T+P 
D + D                    3 He + n 
                      α +γ  
T + T                    α  +2n 
Advanced fusion fuels 
D + 3He        α + p 
p + 6Li               α + 3He 
p + 7Li               2α 
p + 11B              3α 
the p-p  cycle 
p + p               D + e+ +υ 
D + p          3He + γ 
3He +3He               α + 2p 
CNO cycle 
p+ 12C           13N + γ 
[ 13N          13C + e+ +υ +γ ] 
p+ 13C             14N + γ 
p + 14N               15O + γ 
[ 15O            15N + e+ + υ + γ ] 
p+ 15N             12C + α 
Carbon burn 
                               23Na + p 
12C + C12              20Na + α  
                                  2 4Mg +γ  

 

The 𝑄𝑄∗value includes both positron disintegration energy and neutrino 
energy, when relevant. The quantity 〈𝑄𝑄𝑣𝑣∗〉  is the average neutrino energy. 
As usual in nuclear physics, cross sections are expressed in barn; 1 barn = 
10−24𝑐𝑐𝑚𝑚2 
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 Table (2.2):   fusion reaction cross section at the centre of mass energy 
of 10keV and 100keV. Maximum cross –section σmax and location of the 
maximum Emax. Values in parentheses are estimated theoretically; all 
others are measured data [4].  

𝜖𝜖max 

 (keV) 

 

σmax 

( barn) 

σ(100keV) 

(barn)      

 

σ(10keV) 

( barn)          

Reaction 

 

64 

1250 

1750 

1000 

250 

1500 

550 

 

400 

 

5.0                   

0.096                

0.11                 

0.16                  

0.9                   

0.22 

1.2 

 

1.0 × 10-4 

3.43                               

3.3 × 10-2                     

3.7 × 10-2                     

3.4 × 10-2                    

0.1                               

7 × 10-3                        

3 × 10-4                        

(4.4 × 10-25) 

2.0 × 10-10                 

(5.0× 10-103) 

2.72 × 10-2        

2.81 × 10-4       

2.78 × 10-4        

7.90 × 10-4        

2.2 × 10-7 

6× 10-10 

(4.6 × 10-17)       

(3.6 × 10-26)                        

(1.9 × 10-26) 

 

 

D + T → 𝐶𝐶∗2
5 → α + n 

D + D → 𝐶𝐶∗2
4 →T + p 

D + D → 𝐶𝐶∗2
4 3He + n 

T + T → 𝐶𝐶∗2
6  →α + 2n 

D + 3He → 𝐶𝐶∗3
5 → α + 

p 

p + 6Li → 𝐶𝐶∗4
7  →α + 

3He 

p + 11B → 𝐶𝐶∗6
12  →3α 

p + p → 𝐶𝐶∗2
2  →D + e+ 

+ν           

p + 12C → 𝐶𝐶∗7
13  →13N 

+γ 

 

 

 

section of this reaction is characterized by a broad resonance for the 

formation of the compound 𝐻𝐻𝐵𝐵5  nucleus at  ϵ≈ 64 keV. Therefore, the 

astrophysical factor S exhibits a large variation in the energy interval of 

interest. 
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The DD reactions: 

 

              D + D → T + P + 4.04 MeV                               …….(2-28)       

            D + D → 𝐻𝐻𝐵𝐵2
3  +n +3.27 MeV                             …..(2-29)               

 

       Are nearly equiprobable. In the 10–100 keV energy interval, the cross 

sections for each of them are about 100 times smaller than for DT. The 

reactionD(d, γ ) 𝐻𝐻𝐵𝐵4 , instead has cross section about 10,000 times smaller 

than that of 2.28 and 2.29.  

The TT reaction has cross section comparable to that of DD. Notice that 

since the reaction has three products, the energies associated to each of them 

are not uniquely determined by conservation laws.[4] 

 

2.3 Maxwell-averaged fusion reactivities 
       As we have seen earlier, the effectiveness of a fusion fuel is 

characterized by its reactivity <σv>. Both in controlled fusion and in 

astrophysics we usually deal with mixtures of nuclei of different species, in 

thermal equilibrium, characterized by Maxwellian velocity distributions[4]: 

 

𝑣𝑣𝑗𝑗 �𝑣𝑣𝑗𝑗 � =  (
𝑚𝑚𝑗𝑗

2𝜋𝜋𝑖𝑖𝐵𝐵𝑇𝑇
)3 2⁄  exp(−

𝑚𝑚𝑗𝑗𝑣𝑣𝑗𝑗 2

2𝑖𝑖𝐵𝐵𝑇𝑇
)                         ………(2-30) 

 

     Where the subscript j labels the species, T is the temperature and 𝑖𝑖𝐵𝐵 is 

Boltzmann constant. The expression for the Eq (1.7) can now be written 

as[4]: 

< 𝜎𝜎𝑣𝑣 >= ∬𝑑𝑑𝑣𝑣1𝑑𝑑𝑣𝑣2𝜎𝜎1,2(𝑣𝑣)𝑣𝑣𝑣𝑣1(𝑣𝑣1)                        ……..(2-31) 
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       Where v = |𝑣𝑣1−𝑣𝑣2 | and the integrals are taken over the three-

dimensional 

velocity space. In order to put Eq( 2.31) in a form suitable for integration, 

we express the velocities 𝑣𝑣1 and 𝑣𝑣2  by means of the relative velocity and 

of the center-of-mass velocity[4]: 

 𝑣𝑣𝑐𝑐 = (𝑚𝑚1𝑣𝑣1 + 𝑚𝑚2𝑣𝑣2)/(𝑚𝑚1 + 𝑚𝑚2) :                         ………..(2-32) 

𝑣𝑣1 = 𝑣𝑣𝑐𝑐 + 𝑣𝑣𝑚𝑚2/(𝑚𝑚1 + 𝑚𝑚2)                                    ………(2-33) 

𝑣𝑣2 = 𝑣𝑣𝑐𝑐 − 𝑣𝑣𝑚𝑚1/(𝑚𝑚1 + 𝑚𝑚2)                                   

 
 Equation 2.31 then becomes[4]: 
 
 
< 𝜎𝜎𝑣𝑣 >= (𝑚𝑚1𝑚𝑚2)3 2⁄

(2𝜋𝜋𝑖𝑖𝐵𝐵𝑇𝑇)3  × ∬𝑑𝑑𝑣𝑣1𝑑𝑑𝑣𝑣2exp(− (𝑚𝑚1+𝑚𝑚2)𝑣𝑣𝑐𝑐2

2𝑖𝑖𝐵𝐵𝑇𝑇
− 𝑚𝑚𝑟𝑟𝑣𝑣2

2𝑖𝑖𝐵𝐵𝑇𝑇
)𝜎𝜎(𝑣𝑣)𝑣𝑣 ….(2-

34) 
 
 
 
     Where 𝑚𝑚𝑟𝑟  is the reduced mass defined by eqn 1.4, and the subscripts 

‘1,2’ have been omitted. It can be shown (see, for example, Clayton 1983) 

that the integral over 𝑑𝑑𝑣𝑣1𝑑𝑑𝑣𝑣2 can be replaced by an integral over 𝑑𝑑𝑣𝑣𝑐𝑐𝑑𝑑𝑣𝑣  

, so that we can write[4]: 

 

< 𝜎𝜎𝑣𝑣 >= �((𝑚𝑚1+𝑚𝑚2)
2𝑖𝑖𝐵𝐵𝑇𝑇

)3 2⁄  ∫𝑑𝑑𝑣𝑣𝑐𝑐exp(− (𝑚𝑚1+𝑚𝑚2)
2𝑖𝑖𝐵𝐵𝑇𝑇

𝑣𝑣𝑐𝑐2 )�  ×

( 𝑚𝑚𝑟𝑟
2𝜋𝜋𝑖𝑖𝐵𝐵𝑇𝑇

) 3 2⁄  ∫𝑑𝑑𝑣𝑣 exp �− 𝑚𝑚𝑟𝑟
2𝑖𝑖𝐵𝐵𝑇𝑇

  𝑣𝑣𝑐𝑐2�  𝜎𝜎(𝑣𝑣)𝑣𝑣                …….(2-35) 
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       The term in square brackets is unity, being the integral of a normalized 

Maxwellian, and we are left with the integral over the relative velocity. By 

writing the volume element in velocity space as dv = 4π𝑣𝑣2 dv, and using the 

definition 1.3 of center-of-mass energy ϵ, we finally obtained[4]: 

< 𝜎𝜎𝑣𝑣 > = 4𝜋𝜋
(2𝜋𝜋𝑚𝑚𝑟𝑟)1 2⁄  1

(𝑖𝑖𝐵𝐵𝑇𝑇)3 2⁄  ∫ 𝜎𝜎(𝜖𝜖)𝜖𝜖 exp �− 𝜖𝜖
𝑖𝑖𝐵𝐵𝑇𝑇

� 𝑑𝑑𝜖𝜖 ∞
0 ……(2-36)  

 
       Most modern computer simulations of fusion reaction rates utilize 

fitting functions based on reaction rates  calculated from data that was 

published almost thirty years ago [39]. During the course of the last thirty 

years,  improved experimental techniques were developed that allowed for 

the collection of more accurate data at low  plasma temperatures [40]. 

      For the above purpose we  optimize of the  new reaction rate model 

proposed by H. S. Bosch and G. M. Hale [40] and compares  their R-matrix 

reaction rate model with the published values found in the Naval Research 

Laboratory (NRL) Plasma  Formulary [41], the BUCKY 1-D radiation 

hydrodynamics code developed at the University of Wisconsin – Madison   

[42] and the DRACO 2-D radiation hydrodynamics code developed at the 

Laboratory for Laser Energetics (LLE) [43]. 

< 𝜎𝜎𝑣𝑣 > = 𝐵𝐵𝑚𝑚𝑡𝑡 �
𝐴𝐴1

𝑇𝑇𝑟𝑟 + 𝐴𝐴2 + 𝐴𝐴3𝑇𝑇 + 𝐴𝐴4𝑇𝑇2 + 𝐴𝐴5𝑇𝑇3 + 𝐴𝐴6𝑇𝑇4� 

       The coefficients for this equation are given in the table ( 2.3) 
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Table( 2.3) coefficients used in the reaction rate polynomial[44] 

 
 

 

2.3.1 Gamow form for non-resonant reactions 
      Useful and enlightening analytical expressions of the reactivity can be 

obtained by using the simple parametrization in Eq(2.9)  of  the cross-

section. In this case the integrand of Eq( 2.36) becomes[4]: 

 

𝑦𝑦(𝜖𝜖) = 𝑆𝑆(𝜖𝜖)𝐵𝐵𝑚𝑚𝑡𝑡 �− �𝜖𝜖𝐺𝐺
𝜖𝜖
�

1 2⁄
�  = 𝑆𝑆(𝜖𝜖)𝑔𝑔(𝜖𝜖,𝑖𝑖𝐵𝐵𝑇𝑇)         ……….(2-37) 

 

      An interesting result is obtained for temperatures T <<𝜖𝜖𝐺𝐺  and stems 

from the fact that the function g(ϵ, 𝑖𝑖𝐵𝐵𝑇𝑇 ) is the product of a decreasing 

exponential coming from the Maxwellian times an increasing one 

originating from the barrier penetrability, as shown in Fig. 2.3 It has a 

maximum at the Gamow peak energy: 

 



 41 

 
Fig. 2-3 Gamow peak for DD reactions at T = 10 keV: most of the 
reactivity comes from reaction between nuclei with center-of-mass 
energy between 15 and 60 keV[4]. 
 
      From the barrier penetrability, as shown in Fig.2.3 It has a maximum at 
the Gamow peak energy[4]: 
 

ϵGP = ( ϵG
4kB T

)1 3⁄   kBT = ξ kBT                            ………(2-38) 

 

where, for Eq( 2.8): 

 

ξ = 6.2696(𝑍𝑍1𝑍𝑍2)2 3⁄  𝐴𝐴𝑟𝑟1 3⁄  𝑇𝑇−1 3⁄                       ……..(2-39)           
 

with the temperature in kiloelectron Volt. To perform the integration we 

use the saddle-point method, that is, we first expand y(ϵ) in Taylor series 

around ϵ = ϵGP , thus writing: 
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𝑦𝑦(𝜖𝜖) ≅ 𝑆𝑆(𝜖𝜖)𝐵𝐵𝑚𝑚𝑡𝑡 �−3𝜉𝜉 + (
𝜖𝜖−ϵG P  
∆

2�
)2�                          ………(2-40) 

with 

∆= 4
√3

 𝜉𝜉1 2⁄   kBT                                                       ……….(2-41) 

 

 

Equation 2.40 shows that most of the contribution to the reactivity comes 

from a relatively narrow energy region with width ∆ centered around  

ϵ = ϵGP  , in the high energy portion of the velocity distribution function (see 

Fig. 2.3) Gamow peak . 

Using eqns 2.37–2.41 and with the further assumption of nonexponential 

behaviour of S(ϵ) we can integrate eqn 2.35 to get the reaction rate in the so-

called Gamow form[4]: 

< 𝜎𝜎𝑣𝑣 > = 8 ħ
𝜋𝜋  √3 𝑚𝑚𝑟𝑟  𝑍𝑍1𝑍𝑍2𝐵𝐵2 

 𝑆𝑆̅ 𝜉𝜉2 𝐵𝐵𝑚𝑚𝑡𝑡(−3𝜉𝜉)                  ………(2-42)  

 

Here, we have used 

� 𝐵𝐵𝑚𝑚𝑡𝑡(−𝑚𝑚2)𝑑𝑑𝑚𝑚 = √𝜋𝜋 /2
∞

0

 

and indicated with  𝑆𝑆̅an appropriately averaged value of S. In the cases in 

which S depends weakly on ϵ, one can simply set 𝑆𝑆�   = S(0). In the following, 

when distinguishing between 𝑆𝑆̅ and S(0) is not essential, we shall simply use 

the symbol S. Improved approximations, taking into account the dependence 

of S on ϵ are discussed by Clayton (1983) and Bahcall (1966). Inserting the 

values of the numerical constants Eq( 2.42) becomes: 
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< 𝜎𝜎𝑣𝑣 > = 6.4×10−18

𝐴𝐴𝑟𝑟𝑍𝑍1𝑍𝑍2
 𝑆𝑆 𝜉𝜉2 𝐵𝐵𝑚𝑚𝑡𝑡(−3𝜉𝜉) 𝑐𝑐𝑚𝑚3/𝑎𝑎              ………(2-43) 

 

where S is in units of kiloelectron Volt barn and ξ is given by Eq( 2.39). 

We remark that the Gamow form is appropriate for reactions which do 

not exhibit resonances in the relevant energy range. In particular, it is a 

good approximation for the DD reactivity, while it is not adequate for the 

DT and D 𝐻𝐻3 𝐵𝐵 reactions. 

    Equation 2.43 can be used to appreciate the low-temperature behaviour 

of the reactivity. By differentiation we obtained: 

 
𝑑𝑑<𝜎𝜎𝑣𝑣>
<𝜎𝜎𝑣𝑣>

= − 2
3

+ 𝜉𝜉 𝑑𝑑𝑇𝑇
𝑇𝑇

                                             ……….(2-44) 

 

Which leads to 

< 𝜎𝜎𝑣𝑣 >∝ 𝑇𝑇𝜉𝜉                                                       ………(2-45) 
when 

𝜉𝜉 ≫ 1 
A strong temperature dependence is then found when: 

𝑇𝑇 ≪ 6.27𝑍𝑍1
2𝑍𝑍2

2 𝐴𝐴𝑟𝑟  
making apparent the existence of temperature thresholds for fusion , which 

are increasing functions of the mass of the participating nuclei.[4] 
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2.4 Suggestion models: 
2.4.1 The model I: 
      In most of the literatures, resonant tunneling of the Coulomb barrier for 

the nuclear reaction was treated as a two-step process. That is: tunneling 

first; then, decay. The tunneling probability was calculated in an 

oversimplified one-dimensional model [45] , and the decay was assumed to 

be independent of the tunneling process. Nevertheless, this is not true in the 

case of the light nuclei fusion. In reality, when the wave function of the 

projectile penetrates the Coulomb barrier, it will reflect back and forth inside 

the nuclear well. This reflection inside the nuclear well is totally neglected in 

the one-dimensional model where the wave has no reflection as long as it 

penetrates through the barrier.(In the case of α-decay, the outgoing α-particle 

will have no reflection after penetrating the Coulomb barrier even if in 3-

dimensional model [46]). Indeed this reflection is essential for the resonant 

penetration into the center of nuclear well through the Coulomb barrier. 

Secondary, the decay of the penetrating projectile will terminate the motion 

of bouncing back and forth inside the nuclear well. If nuclear reaction 

happens quickly; then, the wave function will have no time to bounce back 

and forth. That is: the short lifetime of the penetrating wave may not allow a 

resonant tunneling, because there will be no enough bounce motion to build-

up the wave function in terms of constructive interference inside the nuclear 

well. In a word, the tunneling and the decay in the light nucleus fusion 

should be combined together as a selective process. Tunneling and decay are 

no longer independent. 

      It has been shown that an imaginary part of potential inside the nuclear 

well is a proper way to consider this lifetime effect on the resonant 
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tunneling. A complex nuclear potential is proposed to describe this resonant 

tunneling effect for sub-barrier fusion in a 3-dimensional model for wide 

range of the energy of the projectile[47-49] . In that 3-dimensional 

calculation, instead of conventional phase shift, δo , we introduced a new 

pair of parameters: 𝑊𝑊𝑟𝑟  and 𝑊𝑊𝐿𝐿  , the real and the imaginary parts of the 

cotangent of phase shift, i.e.[47] 

𝑐𝑐𝑐𝑐𝑏𝑏𝛿𝛿° = 𝑊𝑊𝑟𝑟 + 𝐿𝐿𝑊𝑊𝐿𝐿                                                         ………(2-46) 

Thus, the fusion cross section for S wave will have a simple expression 

as[48]: 

 

𝜎𝜎𝑟𝑟 (0) = 𝜋𝜋     (−4𝑊𝑊𝐿𝐿)
𝑖𝑖2 𝑊𝑊𝑟𝑟

2+(𝑊𝑊𝐿𝐿−1)2                                           ………(2-47)  

 

       This equation (2.47) expresses the resonant feature without invoking 

any Taylor expansion. When 𝑊𝑊𝑟𝑟  =0, the cross section reaches the resonance 

peak. On the other hand, 𝑊𝑊𝐿𝐿  determines the height and width of the 

resonance peak. Hence, we may call  𝑊𝑊𝑟𝑟  the resonance function, and 𝑊𝑊𝐿𝐿  the 

damping function. 𝑊𝑊𝑟𝑟  and 𝑊𝑊𝐿𝐿  may be expressed as the function of two other 

parameters:  𝑈𝑈1𝑟𝑟and 𝑈𝑈1𝐿𝐿 , i.e. the real and the imaginary parts of the nuclear 

Potential [49] 

𝑊𝑊𝑟𝑟 = 𝜃𝜃2 �𝑚𝑚𝑐𝑐  𝑖𝑖𝑟𝑟 sin (2𝑖𝑖𝑟𝑟)+𝑖𝑖𝐿𝐿sinh (2𝑖𝑖𝐿𝐿)
𝑚𝑚  2[𝑎𝑎𝐿𝐿𝑛𝑛 2(𝑖𝑖𝑟𝑟)+𝑎𝑎𝐿𝐿𝑛𝑛ℎ2(𝑖𝑖𝐿𝐿)] − 2 �𝑙𝑙𝑛𝑛 �2𝑚𝑚

𝑚𝑚𝑐𝑐
� + 2𝐶𝐶 + ħ(𝑖𝑖𝑚𝑚𝑐𝑐)�� ……(2-48) 

 

𝑊𝑊𝐿𝐿 = 𝜃𝜃2 �𝑚𝑚𝑐𝑐  𝑖𝑖𝐿𝐿 sin (2𝑖𝑖𝑟𝑟)−𝑖𝑖𝑟𝑟sinh (2𝑖𝑖𝐿𝐿)
𝑚𝑚  2[𝑎𝑎𝐿𝐿𝑛𝑛 2(𝑖𝑖𝑟𝑟)+𝑎𝑎𝐿𝐿𝑛𝑛ℎ2(𝑖𝑖𝐿𝐿)] �                                   ……(2-49)  

 

Here 1/ 𝜃𝜃2is the famous Gamow penetration factor, 
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𝜃𝜃2 = 1
2𝜋𝜋
�𝐵𝐵𝑚𝑚𝑡𝑡 � 2𝜋𝜋

𝑖𝑖  𝑚𝑚𝑐𝑐
� − 1�                                             …….(2-50) 

 

It is a function of incident energy E only, because: 

 

𝑖𝑖2 = (2𝑚𝑚𝑟𝑟/ħ2)𝐸𝐸  , and  𝑚𝑚𝑐𝑐 = ħ2/(𝑍𝑍1𝑍𝑍2𝐵𝐵2𝑚𝑚𝑟𝑟)             

is a constant( the Coulomb unit of length). Here 𝑚𝑚𝑟𝑟  is the reduced mass, 𝑍𝑍1 

and 𝑍𝑍2 are the charge number for the colliding nuclei, respectively; e is the 

charge unit of electricity, ħ is the Planck constant divided by 2π. A complex 

number z is defined as[50]: 

 

𝑖𝑖 = 𝑖𝑖1𝑚𝑚 ≡ 𝑖𝑖1𝑟𝑟𝑚𝑚 + 𝐿𝐿𝑖𝑖1𝐿𝐿𝑚𝑚 ≡ 𝑖𝑖𝑟𝑟 + 𝐿𝐿𝑖𝑖𝐿𝐿                       ……..(2-51) 
 

𝑖𝑖1
2 = �2𝑚𝑚𝑟𝑟

ħ2 � (𝐸𝐸 − 𝑈𝑈1𝑟𝑟 − 𝐿𝐿𝑈𝑈1𝐿𝐿)                                ……..(2-52) 

 

𝑖𝑖1   is the wave number inside the nuclear well. a is the radius of the nuclear 

well: 

𝑚𝑚 = 𝑚𝑚°(𝐴𝐴1
1 3⁄ + 𝐴𝐴2

1 3⁄ ) 

 𝐴𝐴1and 𝐴𝐴2 are the mass number for the colliding nuclei, respectively. 

𝑚𝑚°=1.746 fm to give the correct diameter for deuteron (4.4 fm) [50]. 

C=0.577…is Euler constant. h(k 𝑚𝑚𝑐𝑐 ) is related to the logarithmic derivative 

of Γ function[50] : 
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ℎ(𝑚𝑚) = 1
𝑚𝑚2  ∑ 1

𝑛𝑛(𝑛𝑛2+𝑚𝑚−2)
− 𝐶𝐶 + ln(𝑚𝑚)∞

𝑛𝑛=1                ……..(2-53) 

 

       When this model was applied to the d+t fusion cross section near 100 

keV, it was a surprise to see the good agreement between the theoretical 

calculation and data points  from the evaluated nuclear data file (ENDF/B-

VI). There are only two adjustable parameters, 𝑈𝑈1𝑟𝑟  and 𝑈𝑈1𝐿𝐿  , in this model. 

We may adjust them to meet the resonance peak (5.01 barns at 110 keV); 

then, it will reproduce the data points covering the range of energy from 200 

eV to 500 keV. [51]: 

𝜎𝜎 =
𝐴𝐴5+ 𝐴𝐴2

(𝐴𝐴4−𝐴𝐴3𝐸𝐸)2+1

𝐸𝐸[exp �𝐴𝐴1
√𝐸𝐸
�−1

                                             ……..(2-54) 

 

Where the coefficients 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4,      and 𝐴𝐴5 are called the Duane 

coefficients and are given in the table(2.3),E is the laboratory energy. 
 These empirical parameters are evaluated by nonlinear least-squares fitting 

to available measurement [52]:  

Table 2.4 NRL Plasma Formulary 5-parameter list[27]. 

                                                                                                              D+D Fusion 

D+T Fusion             D+ 𝐻𝐻𝐵𝐵3  Fusion       p+T                    n+ 𝐻𝐻𝐵𝐵3  

𝐴𝐴1     45.95                      89.27                             46.097                    47.88 

  
𝐴𝐴2     50200                     25900                             372                         482 

𝐴𝐴3     1.368× 10−2          3.98× 10−3                4.36× 10−4               3.08 × 10−4 

𝐴𝐴4     1.076                        1.297                         1.220                          1.177 

𝐴𝐴5     409                           647                             0                                0                               
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2.4.2 The model II: 

       The Gamow cross section Eq. (2.57) is based on a calculation of the 

probability that an incident nucleus can tunnel quantum mechanically 

through the repulsive Coulomb barrier of another and so allow a nuclear 

reaction to occur. A simple approximate way to do the calculation is to use 

the one-dimensional Schrodinger equation where[53]: 

 

� ħ
2

2𝑚𝑚
 𝜕𝜕

2

𝜕𝜕𝑚𝑚2 + (𝐸𝐸 − 𝑉𝑉(𝑚𝑚))� ѱ = 0                  ……….(2-55) 

where E is the total energy and the potential energy is taken as[53] 

 

𝑉𝑉(𝑚𝑚) =
𝐵𝐵2

4𝜋𝜋𝜖𝜖°𝑚𝑚
    𝑣𝑣𝑐𝑐𝑟𝑟 𝑚𝑚 > 0 

          = 0             for x< 0 

 the probability of a particle, incident from x = +∞, tunneling through this 

barrier is proportional to[53]: 

 

𝐵𝐵𝑚𝑚𝑡𝑡 − � 𝐵𝐵2

4𝜋𝜋𝜖𝜖°𝑚𝑚
 √2𝑚𝑚
ħ

 𝜋𝜋
2𝐸𝐸1 2⁄ �                                     ……..(2-56) 

 

𝜎𝜎𝑛𝑛=71
𝐸𝐸𝐷𝐷

 exp (- 44

𝐸𝐸𝐷𝐷
1

2�
)                                      ……..(2-57)   

 

 

where 𝐸𝐸𝐷𝐷  is the incident energy (in the laboratory frame) of a deuteron in 

keV colliding with a stationary target deuteron [a barn (b) is 10−28𝑚𝑚2]. The 
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form of this expression is that obtained from an approximate theoretical 

treatment, but with the coefficients modified slightly to fit experiment. 

Using this form, which has good theoretical justification, is expected to 

provide reasonable accuracy even extrapolated to lower energies than the 

experimental results[53]. 

 

2.4.3 The model III: 
       If the potential energy between two particles depends only on distance, 

the force field is called the central force field and is given as F = -

(dU/dr)r/r. In the center of the mass system, angular momentum L = r x p is 

conserved. Since M is constant, r stays on a plane perpendicular to M. In the 

polar coordinates (r; ϕ), the Lagrangian is given as,[54] 

 

 

Figure (2.4) Particle orbit in Coulomb potential 𝒓𝒓 = 𝐫𝐫°
𝟏𝟏−𝛂𝛂 𝐜𝐜𝐜𝐜𝐜𝐜∅𝐫𝐫°

= 𝒃𝒃𝟐𝟐

𝒃𝒃°
 , and 

𝜶𝜶 = (𝟏𝟏 + (𝒃𝒃/𝒃𝒃°)𝟐𝟐)𝟏𝟏 𝟐𝟐⁄  [5] 
 

𝐿𝐿 = 𝑚𝑚��̇�𝑟2 + 𝑟𝑟2∅̇2� − 𝑈𝑈(𝑟𝑟)                                      …….(2-58) 

Since L is independent of ∅, canonical momentum conjugates to ϕ,  
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   𝐿𝐿 =𝑃𝑃∅ = 𝑚𝑚𝑟𝑟2∅̇  

is conserved. Substituting this relation into the energy conservation 

relation:  

𝐸𝐸 = 𝑚𝑚��̇�𝑟2 + 𝑟𝑟2∅̇2� +  𝑈𝑈(𝑟𝑟) 

we obtain Eq( 2.59)[54] 

     

𝑑𝑑𝑟𝑟
𝑑𝑑𝑏𝑏

= �2�𝐸𝐸−𝑈𝑈(𝑟𝑟)�
𝑚𝑚

− 𝑀𝑀2/(𝑚𝑚2𝑟𝑟2)                            ……..(2-59) 

 

In the case of repulsive Coulomb potential[54]: 

 

𝑈𝑈(𝑟𝑟) =
𝐵𝐵𝐿𝐿𝐵𝐵𝑗𝑗

(4𝜋𝜋𝜖𝜖°𝑟𝑟)
 

 the particle orbit is given by following hyperbolic curve. 

 

𝑟𝑟 = 𝑟𝑟°
1−𝑐𝑐𝑐𝑐𝑎𝑎∅

                                                         ……….(2-60) 

Where[54] 

𝑟𝑟° = 𝑀𝑀2

𝑚𝑚𝑟𝑟  
𝐵𝐵𝐿𝐿𝐵𝐵𝑗𝑗

(4𝜋𝜋𝜖𝜖°)

  , 𝛼𝛼 = �1 + 2𝐸𝐸𝑀𝑀2

(
𝐵𝐵𝐿𝐿𝐵𝐵𝑗𝑗
4𝜋𝜋𝜖𝜖°

)2
                   …….(2-61) 

 

Since M = b𝑚𝑚𝑟𝑟  u and E = 𝑚𝑚𝑟𝑟  𝑢𝑢2/2 (b is impact parameter in figure 2.4, u is 

particle speed at infinity  ), we can convert these parameters as follows: 

𝑟𝑟° = 𝑏𝑏2

𝑏𝑏°
   ,     𝛼𝛼 = �1 + 𝑏𝑏2

𝑏𝑏°
2                            ……..(2-62) 



 51 

Where: 

 

𝑏𝑏° =
𝐵𝐵𝐿𝐿𝐵𝐵𝑗𝑗

4𝜋𝜋𝜖𝜖°𝑚𝑚𝑟𝑟𝑢𝑢2                                                        ……….(2-63) 

 

The wave front of the incident wave should be perpendicular to this 

hyperbolic curve. Let k be the de Broglie wave number, the wave front 

satisfying this criteria is: 

 

𝑖𝑖 + 𝑏𝑏° ln 𝑖𝑖(𝑟𝑟 − 𝑖𝑖) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑏𝑏.                                       ………(2-64) 

 

where 𝑏𝑏° =
𝐵𝐵𝐿𝐿𝐵𝐵𝑗𝑗

4𝜋𝜋𝜖𝜖°𝑚𝑚𝑟𝑟𝑢𝑢2 =7.2 x 10−10 𝑍𝑍𝐿𝐿𝑍𝑍𝑗𝑗 /𝐸𝐸𝑟𝑟  (eV) (m), called the Landau 

parameter. The incident wave is already distorted at infinite distance before 

encountering the nucleus since the Coulomb field operates to infinity. So, 

the incident wave is given by : 

𝐵𝐵𝑚𝑚𝑡𝑡[𝐿𝐿𝑖𝑖{𝑖𝑖 + 𝑏𝑏° ln 𝑖𝑖(𝑟𝑟 − 𝑖𝑖)}] 
 

 For a non-relativistic collision 𝐸𝐸𝑟𝑟  = 𝑡𝑡2/2𝑚𝑚𝑟𝑟  =ħ2𝑖𝑖2/2𝑚𝑚𝑟𝑟 , and the 

Schrödinger’s wave equation  becomes: 

[𝜕𝜕2 𝜕𝜕𝑚𝑚2 + (𝑖𝑖2 − 𝛼𝛼/𝑟𝑟)⁄ ]ѱ = 0 
Where: 

𝛼𝛼 = 𝑚𝑚𝑟𝑟𝐵𝐵𝐿𝐿𝐵𝐵𝑗𝑗 2𝜋𝜋𝜖𝜖°ħ2.⁄  

Substituting 

    ѱ = exp(𝐿𝐿𝑖𝑖𝑖𝑖)𝐹𝐹(𝑚𝑚) 

 

F should have the form: 
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F=F(r-z). 

 Then, the wave equation becomes: 

𝜉𝜉𝑑𝑑2𝐹𝐹
𝑑𝑑𝜉𝜉2 +

(1 − 𝐿𝐿𝑖𝑖𝜉𝜉)𝑑𝑑𝐹𝐹
𝑑𝑑𝜉𝜉

− �
𝛼𝛼
2
� 𝐹𝐹 = 0 

For   

𝜉𝜉 = 𝑟𝑟 − 𝑖𝑖 
 Taylor expanding: 

𝐹𝐹(𝐹𝐹 = ∑ 𝑚𝑚𝑛𝑛𝜉𝜉𝑛𝑛(𝑚𝑚° = 1∞
𝑛𝑛=0 )) 

 and substituting into the wave equation gives 𝑚𝑚𝑛𝑛  and F is found to be the 

hyper geometric function F as follows, 

 

ѱ = exp(−𝜋𝜋𝛼𝛼 2⁄ )𝛤𝛤(1 + 𝐿𝐿𝛼𝛼)𝐵𝐵𝐿𝐿𝑖𝑖𝑖𝑖 𝐹𝐹(−𝐿𝐿𝛼𝛼, 1; 𝐿𝐿𝑖𝑖𝜉𝜉)               ……….(2-65) 

Here: 

𝛼𝛼 = 𝛼𝛼 2𝑖𝑖⁄  ,𝐹𝐹(𝑚𝑚, 𝑏𝑏; 𝑖𝑖) ≡�𝛤𝛤(𝑚𝑚 + 𝑛𝑛)𝛤𝛤(𝑏𝑏)𝑖𝑖𝑛𝑛/𝛤𝛤(𝑚𝑚)/𝛤𝛤(𝑏𝑏)/𝛤𝛤(𝑛𝑛 + 1) 

is a hypergeometric function,  𝛤𝛤 is the gamma function. Permeability of the 

Coulomb barrier P is then given from wave function at the origin as, 

𝑃𝑃(𝐸𝐸 𝐸𝐸𝐶𝐶⁄ ) = �𝐸𝐸𝑐𝑐 𝐸𝐸⁄
exp(�𝐸𝐸𝑐𝑐 𝐸𝐸⁄ )−1

                                         ………(2-66) 

 

𝐸𝐸𝑐𝑐 = 𝑚𝑚𝑟𝑟𝐵𝐵4

8𝜖𝜖°2ħ2 = 0.98𝐴𝐴𝑟𝑟(𝑀𝑀𝐵𝐵𝑉𝑉)                               ………(2-67) 

 

Here, 𝑚𝑚𝑟𝑟  is the reduced mass .(𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏 /(𝑚𝑚𝑚𝑚+  𝑚𝑚𝑏𝑏 )) between particles a and 

b, 𝐴𝐴𝑟𝑟  is a mass number of the reduced mass, 𝜖𝜖° is the vacuum permittivity 

(= 8.854 x 10−12  F/m), and ħ is Planck’s constant. Figure 2.5 shows 

permeability of the Coulomb barrier P against E/Ec. The critical energy Ec 
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given by equation (2.67). For the T(d,n) 𝐻𝐻𝐵𝐵2
4  reaction, it is 1.18MeV, while 

numerically fitting Ec to reproduce the measured fusion cross-section is 

1.27MeV showing good agreement.  

     A particle with reduced mass jumping into the nuclear potential, will 

have higher kinetic energy than the original one (de Broglie wavelength 

shorter than the original de Broglie wavelength). Such big changes in wave 

number will cause a resonant interaction within the nucleus. For the DT 

fusion reaction, resonance energy and resonance width are 𝐸𝐸𝑟𝑟  = 78.65 keV 

and Γ= 146 keV, respectively (figure 2.6)  . The probability amplitude of a 

material wave is large since the compound nucleus 𝐻𝐻𝐵𝐵5  has an energy level 

corresponding to a certain boundary condition. 

 
Figure (2.5) Energy dependence of the Coulomb barrier permeability. The Coulomb 
barrier permeability P is well-behaved (P → 1) in the high energy limit (E/Ec ≫ 1) 

while the formula given by Gamow P(E/Ec)=(𝑬𝑬/𝑬𝑬𝒄𝒄)−𝟏𝟏 𝟐𝟐⁄ 𝐞𝐞𝐞𝐞𝐞𝐞 �− � 𝑬𝑬
𝑬𝑬𝒄𝒄
�
−𝟏𝟏 𝟐𝟐⁄

�   [55] is 
valid only at low energy[5] 
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Figure (2.6 )Normalized resonance function for DT reaction in laboratory frame[5] 
 
 

       The compound nucleus is unstable and will decay at a decay time 

constant. The decay time constant ז and the resonance width Γ have the 

relationship  𝛤𝛤𝜏𝜏 =ħ , the decay time is calculated as  4.5 =ז x 10−21  s since 

Γ= 146 keV. This time is much longer (100 times) than the transit time of a 

nucleon with Fermi energy, ז𝐹𝐹=2R/𝑣𝑣𝐹𝐹= 4.4 x 10−23s. The fusion cross-

section, considering the above, is given as, 

𝜎𝜎𝑟𝑟 = 𝜋𝜋ƛ2𝑃𝑃(𝐸𝐸 𝐸𝐸𝐶𝐶⁄ ) 𝛤𝛤𝐿𝐿𝛤𝛤𝑣𝑣
(𝐸𝐸−𝐸𝐸𝑟𝑟)2+𝛤𝛤2 4⁄

                          ……….(2-68) 

Here: 

  ƛ2 = ħ2(2ME)−1 
and the second factor comes from the Breit–Wigner formula of resonance 

cross-section [56], here 𝛤𝛤𝐿𝐿~𝑖𝑖~1/𝐸𝐸0.5. In fact, the measured values of the 

fusion cross-section are given in a form of Equation 2.68 [57]. 

 

𝜎𝜎𝑟𝑟  = 𝜎𝜎° 
𝐸𝐸𝑐𝑐𝑙𝑙

𝐸𝐸𝑙𝑙[𝐵𝐵𝑚𝑚𝑡𝑡 �𝐸𝐸𝑐𝑐𝑙𝑙 𝐸𝐸𝑙𝑙⁄ −1]
 [ 1

1+4(𝐸𝐸𝑙𝑙− 𝐸𝐸𝑟𝑟𝑙𝑙 )2𝛤𝛤𝑙𝑙2 + α ]   …..(2-69) 
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Here, 𝜎𝜎°= 23.79 b, 𝐸𝐸𝑐𝑐𝑙𝑙  =2.11MeV, 𝐸𝐸𝑟𝑟𝑙𝑙  = 78.65 keV, 𝛤𝛤𝑙𝑙 = 146 keV, 

𝛼𝛼= 0.0081 for the T(d,n) 𝐻𝐻𝐵𝐵2
4  reaction [56]. 

 of nuclear fusion reactions (in the laboratory system) illustrating the                  

dependence on deuterium energy. Deuterium energy in the laboratory frame 

𝐸𝐸𝑙𝑙  is related to the energy in the center of mass frame E as E=  

𝑚𝑚𝑏𝑏 /(𝑚𝑚𝑑𝑑+𝑚𝑚𝑏𝑏)𝐸𝐸𝑙𝑙   and thus 𝐸𝐸𝑐𝑐=0.6𝐸𝐸𝑐𝑐𝑙𝑙   = 1.27MeV. 

Recently Li et al [58] gave more clear analysis of fusion cross section. Using 

the Landau’s analysis of resonant scattering of charged particles [56], they 

derived different form of fusion cross section using the optical potential 

=(𝑈𝑈𝑟𝑟 + 𝐿𝐿𝑈𝑈𝐿𝐿) for D + T reaction as follows: 

𝜎𝜎𝑟𝑟 = 𝜋𝜋
𝑖𝑖2𝜃𝜃2

−4𝑤𝑤𝐿𝐿
𝑤𝑤𝑟𝑟2+(𝑤𝑤𝐿𝐿−𝜃𝜃−2)2                                       ……….(2-70) 

Where: 

𝜃𝜃2 = (exp�(𝐸𝐸𝑐𝑐 𝐸𝐸⁄ )1 2⁄ � − 1) 2𝜋𝜋⁄                                                                         

and  𝑤𝑤 = 𝑤𝑤𝑟𝑟 + 𝐿𝐿𝑤𝑤𝐿𝐿 = cot(𝛿𝛿°) /𝜃𝜃2 

 

Where 𝛿𝛿° is phase shift due to nuclear potential. Using approximate 

expression:  

=𝐶𝐶1+𝐶𝐶2𝐸𝐸𝑙𝑙+i𝐶𝐶3, fusion cross-section in laboratory frame is given as 

follows, 

𝜎𝜎𝑟𝑟  = −4𝜋𝜋  ħ2         𝐶𝐶3

2𝑚𝑚𝑑𝑑  𝐸𝐸𝑙𝑙𝜃𝜃2(𝐶𝐶1+𝐶𝐶2𝐸𝐸𝑙𝑙)
2+(𝐶𝐶4−𝜃𝜃−2)2                 …….(2-71) 

For DT fusion, C1 =- 0.5405, C2 = - 0.005546, C3 = -0.3909 gives good 

agreement with measured fusion cross-section[5] 
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                                             Chapter Three 

Calculations and Results 
      In this work we are using MATLAB program (version R2009a)  to 

obtain on theoretical and experimental relations to calculate the fusion cross 

section that it is depend on quantum mechanics principle. And the results 

depends on three models to obtained and  comparison with another results 

for fusion reaction. 

The three models are described as follows:  

 

3.1 model I: 
      The physics principle of this model is based on resonant tunneling effect 

of the Coulomb barrier for the nuclear reaction.(eq .2.54): 

 

 

𝜎𝜎 =
𝐴𝐴5 + (𝐴𝐴4

𝐸𝐸[exp
 

 

                                                           

     Where the Coefficients 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐴𝐴4,   𝐴𝐴5 are called the Duane 

coefficients and are given in the table(2-4)[26],E is the laboratory energy. 
 These empirical parameters are evaluated by nonlinear least-squares fitting 

to available measurement [59]. 
       In this research we calculate the cross section for nuclear fusion 

reactions for hydrogen isotopes with having applied usage extensive in 

production energy field as explained: 
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D +T → α + n + 17.59 MeV 

D + D → T + P + 4.04 MeV 

D + D → 𝐻𝐻𝐵𝐵2
3  +n +3.27 MeV 

D + 𝐻𝐻𝐵𝐵2
3  → α + P +18.35 MeV 

The calculations which are concerning cross sections for DD reaction is 

explained in the following figure(3-1) 

 

 
Figure(3.1) The Total fusion reaction cross section versus deuteron energy for  D-D 

reaction. 

The range of energy is between(10-1200 keV) 
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The calculations which are concerning cross sections for DT reaction is 

explained in the following figure (3-2) 

 

 
Figure(3.2) The Total fusion reaction cross section versus deuteron energy for D-T 

reaction 
The range of energy is between (1-1000000 eV) 

The calculations which are concerning cross sections for D 𝐻𝐻𝐵𝐵2
3   reaction is 

explained in the following figure (3-3) 
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Figure(3.3) The Total fusion reaction cross section versus deuteron energy for 

D+ 𝐻𝐻𝐵𝐵2
3   reaction 

The range of energy is between (10-1200 keV) 

 

3.2 Model II : 
      The principle of physics for this model is based on repulsive Coulomb 

barrier of another and so allow a nuclear reaction to occur Eq( 2.57) 
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Figure(3.4) The Total fusion reaction cross section versus deuteron energy for  D-D 

reaction 
       The range of the energy is between (10-10000 keV) 

and we are calculate the reactivity for this reaction by using the following 

formula:[53] 

<𝜎𝜎𝑛𝑛v> = 3.5 × 10−20

𝑇𝑇𝐷𝐷
2

3�
 exp (- 20.1

𝑇𝑇𝐷𝐷
1

3�
) 𝑐𝑐𝑚𝑚3 𝑎𝑎−1  …………….(3-1) 

101 102 103 104
10-6

10-5

10-4

10-3

10-2

10-1

 Energy [keV]

 σ
 D

D 
[b

ar
n]



 61 

 
Figure(3.5) The D-D Reactivity versus deuteron temperature for D-D reaction.          

 

The range of temperature is between (1 – 1000 keV ) 

 

3.3The model III: 

      The physics principle of this model is based on Coulomb scattering (E,q. 

2.69) 

𝜎𝜎𝑟𝑟  = 𝜎𝜎° 
𝐸𝐸𝑐𝑐𝑙𝑙

𝐸𝐸𝑙𝑙[𝐵𝐵𝑚𝑚𝑡𝑡 �𝐸𝐸𝑐𝑐𝑙𝑙 𝐸𝐸𝑙𝑙⁄ −1]
 [ 1

1+4(𝐸𝐸𝑙𝑙− 𝐸𝐸𝑟𝑟𝑙𝑙 )2𝛤𝛤𝑙𝑙2 + α ] 
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Figure(3.6) The Total fusion reaction cross section versus deuteron energy for D-T 

reaction 
 The range of energy is between (10 – 300 keV) 

The equation (2.71) 

 

𝜎𝜎𝑟𝑟  = 𝜋𝜋  ɦ2         −4𝐶𝐶3

2𝑚𝑚𝑑𝑑  𝐸𝐸𝑙𝑙 𝜃𝜃
2(𝐶𝐶1+𝐶𝐶2𝐸𝐸𝑙𝑙)

2+(𝐶𝐶4−𝜃𝜃−2)2 
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Figure(3.7) The Total fusion reaction cross section versus deuteron energy for D-T 

reaction. 
The range of energy is between (10 – 10000 keV) 

We are calculated the reactivity for D  𝐻𝐻𝐵𝐵2
3  reaction by the equation:[7] 

 

< 𝜎𝜎𝑣𝑣 >𝐷𝐷 𝐻𝐻𝐵𝐵3 =4.98 ×  10−16  exp(-0.152�𝑙𝑙𝑛𝑛 𝑇𝑇
802.6

�
2.65

 )  𝑐𝑐𝑚𝑚3 𝑎𝑎⁄  …….(3-2) 
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Figure(3.8) The D  𝑯𝑯𝑯𝑯𝟐𝟐

𝟑𝟑   Reactivity versus deuteron temperature for D  𝑯𝑯𝑯𝑯𝟐𝟐
𝟑𝟑  

reaction.          

The range of energy is between (10 – 150 keV) 

And we are calculated the reactivity for D Dn reaction by using the 

following equation:[7] 

 

< 𝜎𝜎𝑣𝑣 >𝐷𝐷𝐷𝐷𝑛𝑛 =2.27× 10−14 1+0.00539𝑇𝑇0.917

𝑇𝑇2 3⁄ exp(-19.80
𝑇𝑇1 3⁄ ) 𝑐𝑐𝑚𝑚3 𝑎𝑎⁄ …(3-3) 

100 10210-20

10-18

10-16

10-14

  Energy [keV]

 R
ea

ct
iv

ity
 <
σν

> D
3H

e (c
m

3 /s
) 



 65 

 
Figure(3.9) The D Dn  Reactivity versus deuteron temperature for D Dn reaction.          

 

The range of energy is between (10 – 150 keV) 

And then calculated of reactivity for D Dp reaction by using the following 

equation:[7] 

 

< 𝜎𝜎𝑣𝑣 >𝐷𝐷𝐷𝐷𝑡𝑡 = 2 × 10−14  1+0.00577𝑇𝑇0.949

𝑇𝑇2 3⁄ exp(-19.31
𝑇𝑇1 3⁄ )  𝑐𝑐𝑚𝑚3 𝑎𝑎⁄ ...(3-4) 
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Figure(3.10) The D Dp  Reactivity versus deuteron temperature for D Dp reaction.          

The range of energy is between (10 – 150 keV) 

And then calculated of reactivity for D T reaction by using the following 

equation:[7] 
 

< 𝜎𝜎𝑣𝑣 >𝐷𝐷𝑇𝑇=9.10 × 10−16  exp(-0.572�𝑙𝑙𝑛𝑛 𝑇𝑇
64.2

�
2.13

 )  𝑐𝑐𝑚𝑚3 𝑎𝑎⁄  …(3-5)  
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Figure(3.11) The D T  Reactivity versus deuteron temperature for D T reaction.          

The range of energy is between (1 – 150 keV) 

And we are calculated the reactivity for P P reaction by using the following 

equation:[7] 

 

< 𝜎𝜎𝑣𝑣 >𝑃𝑃𝑃𝑃  =1.56 × 10−37  𝑇𝑇−2 3⁄  exp (-14.94
𝑇𝑇1 3⁄  )×(1+0.044T+2.03× 10−4𝑇𝑇2 

+5× 10−7𝑇𝑇3 )      𝑐𝑐𝑚𝑚3 𝑎𝑎⁄   …………(3-6)  
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Figure(3.12) The p p  Reactivity versus deuteron temperature for p p reaction.          

 
The range of energy is between (1 – 1000 keV) 

And also we are calculated the plasma power density for D D reaction by 

using the following formula:[60] 

 

𝑃𝑃𝐷𝐷𝐷𝐷  = 3.3 × 10−13𝑛𝑛𝐷𝐷2 < 𝜎𝜎𝑣𝑣 >𝐷𝐷𝐷𝐷   watt 𝑐𝑐𝑚𝑚−3  ………….(3-7) 

Where 𝑛𝑛𝐷𝐷  represents the deuterium density 
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Figure(3.13)  the plasma power density for D D reaction 

 

The range of temperature is between (1 – 150 keV) 

And also we are calculated the plasma power density for D T reaction by 

using the following formula:[60] 

 

𝑃𝑃𝐷𝐷𝑇𝑇  = 5.6 × 10−13𝑛𝑛𝐷𝐷𝑛𝑛𝑇𝑇 < 𝜎𝜎𝑣𝑣 >𝐷𝐷𝑇𝑇   watt 𝑐𝑐𝑚𝑚−3……………(3-8) 

Where 𝑛𝑛𝐷𝐷 ,𝑛𝑛𝑇𝑇 are represent the deuterium density and tritium   density 

respectively 
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Figure(3.14)  the plasma power density for D T reaction 
 
The range of temperature is between (1 – 150 keV) 
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Chapter four 

Discussion and Conclusion 
      The calculated results concerning fusion cross section for the reactions 

of  hydrogen isotopes compared with the standard empirical as the results 

that shown in figure (4.1) 

 

Figure(4.1)Fusion cross sections versus centre-of-mass energy for 

reactions of interest to controlled fusion energy [61]. 
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       In model I for the DD fusion reaction  reveals an agreement with the 

standard experimental results that refer to the acceptability of calculations 

that explained by equation (2.54) and completely described in figure (3.1) . 

      And for the DT reaction we observe good agreement with the standard 

experimental results that refer to the acceptability of calculations relations 

used figure (3.2) . 

     And for the D 𝐻𝐻𝐵𝐵2
3  reaction reveals a high agreement with the standard 

experimental results figure (3.3) . 

 In model III for the DT fusion reaction  reveals an high agreement with the 

standard experimental results that refer to the acceptability of calculations  

that explained by equation (2.69) and completely described in figure (3.6) . 

      The calculated results concerning fusion cross section for the reactions 

of  hydrogen isotopes compared with the standard empirical results are 

shown in figure (4.2). 
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Figure (4.2) Neutron-producing fusion reaction cross sections 

(stationary target)[53]. 

      In model II for the DD fusion reaction  reveals an agreement with the 
standard experimental results that reflecting the acceptability of calculations 
that explained by equation (2.57) and completely described in figure (3.4). 

       From the observations above it can be  concluded that the relations used 
in calculation the fusion cross section leading to the fact that contains most 
of the real physical phenomena that occur through interaction and this in 
turn leads to tranquility and admissibility in using these relations in the next 
calculations  relating to the global physical factors influencing the design the 
devices and systems that depends on nuclear fusion technology such as 
reactivity,  reaction rate, power released, fusion products, etc. 

       We conclude that the calculation of the controlled fusion cross sections 
plays a key role,  notify can be considered as the important starting point in 
the design and completion of any design  calculation programs  or 
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practicability system or experiment because it can not be conclusion any of 
the influencing  factors without the need to the fusion cross section of 
reaction and whenever it is accessed to experimental or theoretical 
relationship reflect a very high correspond increases of tranquility in 
entering into the construction of such systems especially those that are used 
for produce the power and hence the results related to the calculation the 
reactivity, reaction rate and power depends mainly on the fusion cross 
section. 

      Compare the results related to reactivity show in figures (3.8 - 3.12) with 
the international results published that shown in figure (4.3) 

figure(4.3) Maxwell-averaged reaction reactivity versus temperature for 
reactions of interest to controlled fusion[4]. 
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       These figures reflect a high agreement and this in turn leads to a success 
in the calculations concern to the released power by its dependence on 
reactivity as shown in equations(3-7 and 3-8) 

In figures (3.13 – 3.14) which describe the physical behavior for the power 
density output released by any systems that operated by the using of the 
hydrogen isotopes as a standard fuels gives or reflect a wide compatibility or 
agreement with the standard power density behaviors that shown in figure 
(4.4). 

  
 

Figure( 4-4):Variation of the D-T plasma power density with the 
incident deuteron temperature[60]. 

Conclusion:  

      Finally we obtained to a conclusion that if anyone interest in building or 
constructing a fusion system and they can really depend on the describing 
models in calculating the global fusion parameters and this fact are clearly 
observed by the our calculations or describing figures.   
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Future work 
 

1. Extending the current study to include all controlled thermonuclear fusion    

reactions for the purpose of being acquainted with the status of each 

reactions in terms of identifying the priorities of its applications. 

2. Preparation computer simulation model includes all fusion reactions as 

well as classical and quantum consideration. 

3 .Studying the reactions known as Super Thermal and identifying areas of  

its applications preceded by the perception of the theoretical side relating 

to it. 

4 . Studying the high life time for the heavy nucleus.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 77 

 References 

1. M. Keilhacker, A. Gibson, C. Gormezano and P.H. Rebut, “The              
Scientific Success of JET”, Nuclear Fusion, Volume 41, Number 12, 
2001, pp. 1925-1935. 

 
2. JT-60 Team, “Review of JT-60U Experimental Results in 1998”, 

JAERI 99-048. 
 

3. Jordan E. Merelli, "Plasma position control in the Stor – M Tokamak" 
P.1      January, 2003 . 

 
4. Engida H. Selato, "Nuclear Fusion Energy" Addis Ababa University, 

P.3, Julay, 2010. 
 

5. M. Kikuchi, "Hydrogen Fusion: Light Nuclei and Theory of Fusion 
Reactions" Springer, P.15, 2011. 

 
6. Asimov I Atom. Nightfall Inc. (1991) 

 
7. Atzeni. "Nuclear Fusion Reactions" Chap.1, P.3, 2004. 

 
8.  J. M. Blatt, V. F. Weisskopf:" Theoretical Nuclear Physics", 

Chapter VIII, Springer-Verlag, 1979 
 

9.  Akito T. , Norio Y. "Fusion Rates of Bosonized Condensates", Osaka 
Univercity, Sept. 2006.  

 
10.   A. Takahshi, et al: JJAP, 41(2001)pp.7031-7046 

 
11.   M. Ohta, A. Takahashi: JJAP, 42(2002)pp.645-649 

 
12.   A. Takahashi:" Theoretical backgrounds for transmutation 

reactions", ppt slides for Sunday School of ICCF10, see 
http://www.lenr-canr.org/ Special Collection for ICCF10. 



 78 

 
13.   B. Povh, K. Rith, C. Scholtz, F. Zetsche: Teilchen und 

Kerne, Springer, 1994. 
 

14.   K. Yagi: Nuclear Physics (in Japanese), Asakura, Tokyo, 
1971 

 
15.   L. I. "Schiff:Quantum Mechanics", McGraw-Hill (1955) 

 
16.   P. M. Morse, H. Feshbach; "Methods of Theoretical 

Physics", McGraw-Hill (1953) 
 

17.   X. Z. Li, et al: Phys. Rev. C, 61(2000)24610 
 

18.    Xing Z. Li , "Nuclear Physics for Nuclear Fusion ", The Journal of 
American Society, Vol. 41, No. 63, 2002. 

 
19.   Igor D. Kaganovich, Edward A. Startsev, et al, "Scaling Cross 

Section for Ion – Atom Impact Ionization" Prenceton University, Vol. 
11, No. 3, November, 2003. 

 
20.   V. I. Zagrebaev* and V. V. Samarin, " Near – Barrier Fusion of 

Heavy Nuclei : Coupling of Channels", Joint Institute for Nuclear 
Research, Vol. 67, No. 8, November, 2003. 

 
21.   M. Yu. Romanovsky and W. Ebeling, " Fluctuations of Electric 

Microfields in Laser – Produced Ion Clusters : Enhancement of 
Nuclear Fusion", Humboldt University Berlen, Vol. 14, No. 6, June, 
2003. 

 
22.    Xing Z. Li, Bin l., et al, " Fusion Cross Section for Inertial Fusion 

Energy ", Cambridge University Press, July, 2004. 
 



 79 

23.   L.F. Canto, R. Donangelo, et al, " Semiclassical Treatment of Fusion 
Processes in Collision of Weakly Bound Nuclei ", Institute de Fisica, 
2005. 

 
24.   L.F. Canto, R. Donangelo, et al, " Theory of Breakup and Fusion of 

Weakly Bound Nuclei ", Institute de Fisica, 2005. 
 

25.   Ruggero M. Santilli, " Controlled Intermediate Nuclear ", Institute 
for Basic Research ", 2008. 

 
26.   Mark D., " Inertial Electrostatic Confinement Fusion Provides A 

potential Break Through in Designing and Implementing Practical 
Fusion Power Plants ", 1Twww.askamr.com1T , 2008. 

 
27.   Xing Z. Li, Qing M. Wei ,et al, " A new Simple Formula for Fusion 

Cross Section Light Nuclei ", Tsinghua University, October, 2008. 
 

28.   Yeong E. Kim, " Bose – Einstein Condensate Theory of Deuteron 
Fusion in Metal " Purdue University, 2010. 

 
29.   Bulent Y. , Sakir A. , et al, " Stochastic Semi – Classical Description 

of Sub – Barrier Fusion Reactions ", EDP Sciences, 2011. 
 

30.   J.K. Bitok, F.G. Kanyeki, et al, " Calculation of Fusion Reaction 
Cross Section and Angular Momentum Windo 𝐿𝐿𝐿𝐿, 𝑂𝑂16  , 𝐹𝐹𝐸𝐸56  , 𝐾𝐾𝑅𝑅866  
on Fusion Reaction with 𝑡𝑡𝑏𝑏208  at 𝐸𝐸𝑙𝑙𝑚𝑚𝑏𝑏 = 500 𝑀𝑀𝐵𝐵𝑉𝑉 " International 
Journal of Physics and Mathematical Sciences, Vol. 2, 2012. 

 
31.   E.N. Tsyganov, S.B. Dabagov, et al in, " Cold Fusion Continues ", 

North Caucasus State Technical University, Stuvropol, 2012. 
 

32.   Rajdeep S., Andreas M. , et al, " Tunneling Through Coulombic 
Barriers : Quantum Control of Nuclear Fusion ", Yale University, Vol. 
110, 2012.  

http://www.askamr.com/�


 80 

 
33.   Leo G. Sapogin, Yu. A. Ryabov, " Low Energy Nuclear Reactions 

[LENR] – and Nuclear Transmutations at Unitary Quantum Theory ",  
" International Journal of Physics and Astronomy, Vol. 1, No. 1, 
December, 2013. 

 
34.   Igor D. Kaganovich, Ronald C. Davidson, et al, " Comparison of 

Quantum Mechanical and Classical Trajectory Calculations of Cross 
Section for Ion – Atom Impact Ionization of Negative –and Positive – 
ions for Heavy Ion Fusion Application ", Prenceton University, 
December, 2013. 

 
35.   Falah K. Ahmed, Fouad A. Majeed,  et al, " The Effect of Break up 

on The Total Fusion Reaction Cross Section of Stable Weakly Bound 
Nuclei ", University of Babylon, 2013. 

 
36.   P. Eudes1, Z. Basrak2, et al, " Towards A unified Description of 

Fusion Evaporation – Residue Cross Sections Above The Barrier ", 
Europhysics Letters, 2013. 

 
37.   V. Yu. Denisov, " Nucleus – Potential with Shell – Correction 

Contribution and Deep Sub – Barrier Fusion of Heavy Nuclei ", 
National University of Kiev Prospect Glushkova 2, April, 2014.  

 
38.   Decrton M. , Massaut V. , Inge Uytdenhouwen, Johan Braet, et al, 

"Controlled nuclear fusion:The energy of the stars on  earth" , Open 
Report SCK.CEN-  BLG   -1049, 2007. 

 
39.   L.M., "  Hively Nuclei Fusion ", 17,837, 1977. 

 
40.   Bosch, H.S. , Hale, G.M. , " Nuclei Fusion " 32, 1992. 

 
41.   Book, " NRL Plasma Formulary ", publ. 6790-02-450, Rev. Naval Research 

Laboratory, Washington, December, 2002. 
` 



 81 

42.   R.R. Peterson, J.J. Macfarlane , and G.A. Moses, " BUCKY-A1-D  
radiation Hydrodynamics Code for Simulation Inertial Confinement fusion 
High Energy Density Plasma ", UWFDM-984, University of Wisconsin , 
August, 1995. 

43.   P.B. Radha , V.N. Goncharvo, T.G.B. et al, " Two Dimension Simulations 
Of  Plastic Shell Direct – Drive Implosions on OMEGA", (to appear in 
Physics Plasma). 

44.   T.A. Heltemes, G.A. Moses, et al, "Analysis of an Improved Fusion 
Reaction Rate Model for Use in Fusion Plasma Simulation", University of 
Wisconsin Madison,  WI53706, April, 2005. 

 
45.   G. Gamow , “Nuclear Energy Sources and Stellar Evolution,” Phys. 

Rev. 53, 595 (1938). 
 

46.   G. Gamow , “Zur Quantentheorie des Atomkernes,” Zeits. f. Physik. 
51, 204 (1928). 

 
47.   X. Z. Li, “Overcoming of the Gamow Tunneling Insufficiencies by 

Maximizing a Damp-Matching Resonant Tunneling,” Czechoslovak 
Journal of Physics, 49, 985 (1999). 

 
48.   X. Z. Li, C. X. Li and H. F. Huang, “Maximum Value of the 

Resonant Tunneling Current through the Coulomb Barrier,” Fusion 
Technology, 36, 324 (1999). 

 
49.   X. Z. Li, J. Tian , M. Y. Mei and C. X. Li, “Sub-barrier Fusion and 

Selective Resonant Tunneling,” Phys. Rev. ,C 61, 024610 (2000). 
 

50.   H. Feshbach, Theoretical Nuclear Physics, John Wiley & Sons, Inc. 
(New York) 1992, p.488. 

 
51.   D. L. Book, NRL Plasma Formulary, NRL Publication 177-4405, 

Naval Research Laboratory, (revised 1990) p.44. 
 



 82 

52.   B.H.Duane, "Fusion Cross Section Theory," BWNL-1685 (Pacific 
North West Laboratory report, 1972) p.76. 

 
53.   I.H. Hutchinson ", Principles of Plasma Diagnostics", Second 

Addition , Cambrigde University Press, 2002.   
 

54.   Landau LD, Lifschitz EM (1969) Mechanics. Pergamon Press 
 

55.   Gamov G, Critchfield CL (1951) The Theory Atomic Nucleus and 
Nuclear Energy Sources. Clarendon Press, Ch. X, eq. 2. 

 
56.   Landau LD, Lifschitz EM (1987) Quantum Mechanics. 3rd edn., 

Pergamon Press. 
 

57.   Duane BH (1972) Fusion Cross-section Theory. Brookhaven 
National Laboratory Report BNWL-1685, pp. 75–92. 

 
58.   Li ZX, Wie MQ, Liu B (2008) Nucl. Fusion 48, 125003. 

 
59.   B.H.Duane, "Fusion Cross Section Theory," BWNL-1685 (Pacific 

North West Laboratory report, 1972) p.76 
 

60.   Commons-wikiedia.org/wiki/file DT-fusion-reaction-power- density 
jpg 24, May, 2007.              

61.   Stefano Atzeni, Jurgen Meyer-Ter-Vehn; , “The physics of Intertial: 
Beam plasma interaction, Hydrodynamics ,Hot ,Dense matter”, 
Clarenon press –Oxford,2004. 

 
 

 

1.  

 



 1 

1. CM M. Keilhacker, A. Gibson, C. Gormezano and P.H. Rebut, “The              
Scientific Success of JET”, Nuclear Fusion, Volume 41, Number 12, 
2001, pp. 1925-1935. 

 
2. JT-60 Team, “Review of JT-60U Experimental Results in 1998”, 

JAERI 99-048. 
 

3. Jordan E. Merelli, "Plasma position control in the Stor – M Tokamak" 
P.1      January, 2003 . 

 
4. Engida H. Selato, "Nuclear Fusion Energy" Addis Ababa University, 

P.3, Julay, 2010. 
 

5. M. Kikuchi, "Hydrogen Fusion: Light Nuclei and Theory of Fusion 
Reactions" Springer, P.15, 2011. 

 
6. Asimov I (1991) Atom. Nightfall Inc. 

 
7. Atzeni. "Nuclear Fusion Reactions" Chap.1, P.3, 2004. 

 
8.  J. M. Blatt, V. F. Weisskopf:" Theoretical Nuclear Physics", 

Chapter VIII, Springer-Verlag, 1979 
 

9.  Akito T. , Norio Y. "Fusion Rates of Bosonized Condensates", Osaka 
Univercity, Sept. 2006.  

 
10.   A. Takahshi, et al: JJAP, 41(2001)pp.7031-7046 

 
11.   M. Ohta, A. Takahashi: JJAP, 42(2002)pp.645-649 

 
12.   A. Takahashi:" Theoretical backgrounds for transmutation 

reactions", ppt slides for Sunday School of ICCF10, see 
http://www.lenr-canr.org/ Special Collection for ICCF10. 

 



 2 

13.   B. Povh, K. Rith, C. Scholtz, F. Zetsche: Teilchen und 
Kerne, Springer, 1994. 

 
14.   K. Yagi: Nuclear Physics (in Japanese), Asakura, Tokyo, 

1971 
 

15.   L. I. "Schiff:Quantum Mechanics", McGraw-Hill (1955) 
 

16.   P. M. Morse, H. Feshbach; "Methods of Theoretical 
Physics", McGraw-Hill (1953) 

 
17.   X. Z. Li, et al: Phys. Rev. C, 61(2000)24610 

 
18.    Xing Z. Li , "Nuclear Physics for Nuclear Fusion ", The Journal of 

American Society, Vol. 41, No. 63,P1, 2002. 
 

19.   Igor D. Kaganovich, Edward A. Startsev, et al, "Scaling Cross 
Section for Ion – Atom Impact Ionization" Prenceton University, Vol. 
11, No. 3,P1, November, 2003. 

 
20.   V. I. Zagrebaev* and V. V. Samarin, " Near – Barrier Fusion of 

Heavy Nuclei : Coupling of Channels", Joint Institute for Nuclear 
Research, Vol. 67, No. 8,P1, November, 2003. 

 
21.   M. Yu. Romanovsky and W. Ebeling, " Fluctuations of Electric 

Microfields in Laser – Produced Ion Clusters : Enhancement of 
Nuclear Fusion", Humboldt University Berlen, Vol. 14, No. 6,P1, 
June, 2003. 

 
22.    Xing Z. Li, Bin l., et al, " Fusion Cross Section for Inertial Fusion 

Energy ", Cambridge University Press,P1, July, 2004. 
 



 3 

23.   L.F. Canto, R. Donangelo, et al, " Semiclassical Treatment of Fusion 
Processes in Collision of Weakly Bound Nuclei ", Institute de 
Fisica,P1, 2005. 

 
24.   L.F. Canto, R. Donangelo, et al, " Theory of Breakup and Fusion of 

Weakly Bound Nuclei ", Institute de Fisica,P1, 2005. 
 

25.   Ruggero M. Santilli, " Controlled Intermediate Nuclear ", Institute 
for Basic Research ",P1, 2008. 

 
26.   Mark D., " Inertial Electrostatic Confinement Fusion Provides A 

potential Break Through in Designing and Implementing Practical 
Fusion Power Plants ", www.askamr.com ,P1, 2008. 

 
27.   Xing Z. Li, Qing M. Wei ,et al, " A new Simple Formula for Fusion 

Cross Section Light Nuclei ", Tsinghua University,P1, October, 2008. 
 

28.   Yeong E. Kim, " Bose – Einstein Condensate Theory of Deuteron 
Fusion in Metal " Purdue University,P1, 2010. 

 
29.   Bulent Y. , Sakir A. , et al, " Stochastic Semi – Classical Description 

of Sub – Barrier Fusion Reactions ", EDP Sciences,P1, 2011. 
 

30.   J.K. Bitok, F.G. Kanyeki, et al, " Calculation of Fusion Reaction 
Cross Section and Angular Momentum Windo 𝐿𝐿𝐿𝐿, 𝑂𝑂16  , 𝐹𝐹𝐹𝐹56  , 𝐾𝐾𝐾𝐾866  
on Fusion Reaction with 𝑝𝑝𝑝𝑝208  at 𝐹𝐹𝑙𝑙𝑙𝑙𝑝𝑝 = 500 𝑀𝑀𝑀𝑀𝑀𝑀 " International 
Journal of Physics and Mathematical Sciences, Vol. 2,P1, 2012. 

 
31.   E.N. Tsyganov, S.B. Dabagov, et al in, " Cold Fusion Continues ", 

North Caucasus State Technical University, Stuvropol,P1, 2012. 
 

32.   Rajdeep S., Andreas M. , et al, " Tunneling Through Coulombic 
Barriers : Quantum Control of Nuclear Fusion ", Yale University, Vol. 
110,P1, 2012.  

http://www.askamr.com/�


 4 

 
33.   Leo G. Sapogin, Yu. A. Ryabov, " Low Energy Nuclear Reactions 

[LENR] – and Nuclear Transmutations at Unitary Quantum Theory ",  
" International Journal of Physics and Astronomy, Vol. 1, No. 1,P1, 
December, 2013. 

 
34.   Igor D. Kaganovich, Ronald C. Davidson, et al, " Comparison of 

Quantum Mechanical and Classical Trajectory Calculations of Cross 
Section for Ion – Atom Impact Ionization of Negative –and Positive – 
ions for Heavy Ion Fusion Application ", Prenceton University,P1, 
December, 2013. 

 
35.   Falah K. Ahmed, Fouad A. Majeed,  et al, " The Effect of Break up 

on The Total Fusion Reaction Cross Section of Stable Weakly Bound 
Nuclei ", University of Babylon,P1, 2013. 

 
36.   P. Eudes1, Z. Basrak2, et al, " Towards A unified Description of 

Fusion Evaporation – Residue Cross Sections Above The Barrier ", 
Europhysics Letters,P1, 2013. 

 
37.   V. Yu. Denisov, " Nucleus – Potential with Shell – Correction 

Contribution and Deep Sub – Barrier Fusion of Heavy Nuclei ", 
National University of Kiev Prospect Glushkova 2, April, 2014.  

 
38.   Decrton M. , Massaut V. , Inge Uytdenhouwen, Johan Braet, et al, 

"Controlled nuclear fusion:The energy of the stars on  earth" , Open 
Report SCK.CEN-  BLG   -1049, 2007. 

 
39.   L.M., "  Hively Nuclei Fusion ", 17,837, 1977. 

 
40.   Bosch, H.S. , Hale, G.M. , " Nuclei Fusion " 32, 1992. 

 
41. " NRL Plasma Formulary ", publ. 6790-02-450, Rev.  Book,  Naval Research 

Laboratory, Washington, December, 2002. 
` 



 5 

42.   R.R. Peterson, J.J. Macfarlane , and G.A. Moses, " BUCKY-A1-D  
radiation Hydrodynamics Code for Simulation Inertial Confinement fusion 
High Energy Density Plasma ", UWFDM-984, University of Wisconsin , 
August, 1995. 

43.   P.B. Radha , V.N. Goncharvo, T.G.B. et al, " Two Dimension Simulations 
Of  Plastic Shell Direct – Drive Implosions on OMEGA", (to appear in 
Physics Plasma). 

44.   T.A. Heltemes, G.A. Moses, et al, "Analysis of an Improved Fusion 
Reaction Rate Model for Use in Fusion Plasma Simulation", University of 
Wisconsin Madison,  WI53706, April, 2005. 

 
45.   G. Gamow , “Nuclear Energy Sources and Stellar Evolution,” Phys. 

Rev. 53, 595 (1938). 
 

46.   G. Gamow , “Zur Quantentheorie des Atomkernes,” Zeits. f. Physik. 
51, 204 (1928). 

 
47.   X. Z. Li, “Overcoming of the Gamow Tunneling Insufficiencies by 

Maximizing a Damp-Matching Resonant Tunneling,” Czechoslovak 
Journal of Physics, 49, 985 (1999). 

 
48.   X. Z. Li, C. X. Li and H. F. Huang, “Maximum Value of the 

Resonant Tunneling Current through the Coulomb Barrier,” Fusion 
Technology, 36, 324 (1999). 

 
49.   X. Z. Li, J. Tian , M. Y. Mei and C. X. Li, “Sub-barrier Fusion and 

Selective Resonant Tunneling,” Phys. Rev. ,C 61, 024610 (2000). 
 

50.   H. Feshbach, Theoretical Nuclear Physics, John Wiley & Sons, Inc. 
(New York) 1992, p.488. 

 
51.   D. L. Book, NRL Plasma Formulary, NRL Publication 177-4405, 

Naval Research Laboratory, (revised 1990) p.44. 
 



 6 

52.   B.H.Duane, "Fusion Cross Section Theory," BWNL-1685 (Pacific 
North West Laboratory report, 1972) p.76. 

 
53.   I.H. Hutchinson ", Principles of Plasma Diagnostics", Second 

Addition , Cambrigde University Press, 2002.   
 

54.   Landau LD, Lifschitz EM Mechanics. Pergamon Press, (1969). 
 

55.   Gamov G, Critchfield CL The Theory Atomic Nucleus and Nuclear 
Energy Sources. Clarendon Press, Ch. X, eq. 2, (1951). 

 
56.   Landau LD, Lifschitz EM Quantum Mechanics. 3rd edn., Pergamon 

Press, (1987). 
 

57.   Duane BH Fusion Cross-section Theory. Brookhaven National 
Laboratory Report BNWL-1685, pp. 75–92, (1972) 

 
58.   Li ZX, Wie MQ, Liu B (2008) Nucl. Fusion 48, 125003. 

 
59.   B.H.Duane, "Fusion Cross Section Theory," BWNL-1685 (Pacific 

North West Laboratory report, 1972) p.76 
 

60.   Commons-wikiedia.org/wiki/file, DT-fusion-reaction-power- 
density, jpg 24, May, 2007.              

61.   Stefano Atzeni, Jurgen Meyer-Ter-Vehn; , “The physics of Intertial: 
Beam plasma interaction, Hydrodynamics ,Hot ,Dense matter”, 
Clarenon press –Oxford,2004. 
 

 
 

 

1.  


	الصفحات الاولى
	البحث1
	references of research1

